

EXPERIMENTAL RESEARCH ON THE FIRE BEHAVIOUR OF STEEL COLUMNS EMBEDDED ON WALLS

António J. P. Moura Correia ^a, João Paulo C. Rodrigues ^a & Valdir Pignatta e Silva ^b ^a Faculty of Sciences and Technology of University of Coimbra, Portugal. ^bPolytechnic School of University of S. Paulo, Brazil.

□ OBJECTIVES

 The aim of this study was to analyse the thermal behaviour of steel columns embedded on one-leaf walls. Fire resistance tests with two different column cross-sections, two orientations of the inertia axis in relation to the fire and two thicknesses of one-leaf building walls, were tested. The experimental results were compared with the ones obtained in the FE program SUPERTEMPCALC.

EXPERIMENTAL PROGRAM

- Columns of cross-sections HEA160 and HEA200, steel S355, embedded on oneleaf brick walls were tested (Fig. 2).
- The columns were placed in the center of a 3D restraining frame. This frame had columns HEA200, 3m tall and beams HEA200, 6m span, steel S355 (Fig. 3).
- The specimens had thermocouples type k in different positions of the cross-section of the columns and on the walls (Fig. 1).
- The evolution of temperatures in the furnace followed the ISO 834 standard fire curve (Fig. 3).

Web parallel to the wall surface:

- The temperature in the flange not exposed to the fire, is higher in the case of the walls of smaller thicknesses (Fig. 4a)).
- In the face of the web exposed to the fire, the temperatures are slightly higher for the thin than for the thick walls (Fig. 4b)).

Web perpendicular to the wall surface:

- The temperature in the exposed flange is higher in the case of the thin than in the thick walls (Fig. 5a)).
- In some cases a higher temperature in the unexposed flange was observed with the thicker wall.

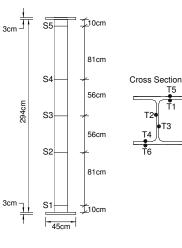
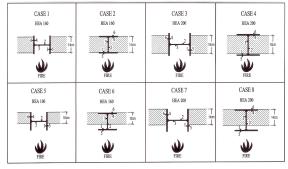
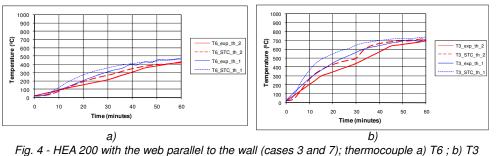
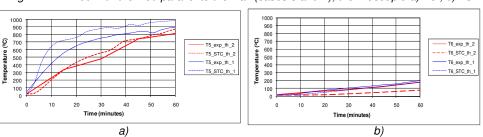


Fig. 1 - Position of the thermocouples


Fig. 2 – Cases study

In graphs, th_2 stands for the thicker walls, and th 1 for thinner walls

Fig. 3 - Construction of the test model

Fig. 5 - HEA 200 - web perpendicular to the wall (cases 4 and 8); thermocouples a) T5 ; b) T6

Sponsors:

- For cases with the web parallel to the wall surface it was concluded that the thicker wall plays an important role in reducing the temperatures in the unexposed half of the flange and also in the web.
- For cases with the web perpendicular to the wall surface it was observed, in the unexposed face of the flange, higher temperatures with the thicker wall. On the contrary on the exposed flange the temperatures are much higher with thin walls.

CIEC – Center for Research in Civil Engineering Research Group on Fire Safety Engineering Departamento de Engenharia Civil da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Rua Luís Reis Santos. 3030-788 Coimbra. PORTUGAL Telef: +351 239 797100. Fax: +351 239 797123.

Escola Politécnica da Universidade de S. Paulo, Departamento de Engenharia de Estruturas e Geotécnica. BRASIL.

