List of symbols

a	throat thickness of fillet weld
a_1	effective length of the foundation, length of the base plate
a_c	height of the column cross-section size of the anchor head
a_h b	width of angle leg, width of the base plate
b_{0}, b_{1}, b_{1}	
b_{0}, b_{1}, b_{1}	width of beam flange
b_b b_c	width of the column cross-section, of column flange
b_{eff}	effective width
b_{eff} b_{haz}	width of heat affected zone
b_{haz} b_p	width of end plate
\mathcal{O}_p C	effective width of the flexible base plate
c_{\varnothing}	required concrete cover for reinforcement
$d^{\mathcal{C}_{\varnothing}}$	nominal diameter of the bolt
d_0	diameter of the bolt hole
d_{0}, d_{1}, d_{2}	
d_h	diameter of anchor head
e	eccentricity, distance from bolt to edge of T-stub, from edge of the angle
$e, e_x, e_a,$	
e_0	eccentricity of the joint
$e_{I_{1}} e_{2}$	bolt end distance, in force direction, perpendicular to force direction
e_x	distance from bolt to edge of end plate
f_a	characteristic strength for local capacity in tension and compression
$f_{a,haz}$	characteristic strength of heat affected zone
f_{cd}	design value of compressive cylinder strength of concrete $f_{cd} = f_{ck} / \gamma_c$
$f_{cd,g}$	design value of compressive cylinder strength of grout
f_{ck}	characteristic value of concrete compressive cylinder strength
f_j	concrete bearing strength
f_o	characteristic strength for bending and yielding in tension and compression
\int_{C}	ultimate strength
f_{ub}	ultimate strength of the bolt
f_{v}	characteristic shear strength
$f_{v,haz}$	characteristic shear strength of heat affected zone
f _{vw,d} f	design shear resistance of the fillet weld per unit length characteristic strength of the weld metal
$f_w f_y$	characteristic strength of the weld metal yield stress of steel
\int_{ya}^{y}	average yield strength
f_{yb}	yield stress of the bolt
f_{yc}	yield stress of column
g	length of the gap
$\frac{g}{g_1}$	leg length of fillet weld
h, h_0, h_1	height, height of concrete foundation
h_c	height of column cross section
h_{ef}	length of anchor embedded in the concrete
k	stiffness coefficient
k_c	total stiffness coefficient of the compression zone
$k_{e\!f\!f}$	total stiffness coefficient of one bolt row in tension
k_{eq}	total stiffness coefficient the tension zone
k_i	stiffness of component <i>i</i>
k_j	stress concentration factor
$k_{ heta}$	reduction factor based on material temperature

- m, m_x distance from the bolt centre to the plate
- m_1, m_2 distances from bolt to web of T-stub
- $m_{pl,Rd}$ plastic bending moment resistance of the base plate per unit length
- m_x distance from bolt to beam flange
- *n* distance from bolt centre to contact with the foundation
- *p* bolt pitch
- p_1, p_2 bolt pitch; in force direction, perpendicular to force direction
- *r* lever arm
- r_c fillet radius of column
- r_e theoretical resistance obtained from the design model
- r_t experimentally found resistance

t thickness

 t_0, t_1, t_2, t_w thickness

- t_e effective thickness of partial penetration butt weld
- t_f thickness of flange
- t_{fb} thickness of beam flange
- *t_{fc}* thickness of column flange
- t_g thickness of grout
- t_h thickness of anchor head
- t_p thickness of plate thickness, of end plate
- t_{tc} thickness of column flange
- t_w thickness of the column web
- t_{wa} thickness of the washer
- t_{wc} thickness of column web
- w_1, w_2 distance between bolts
- *x, y, z* axes

z lever arm

- z_c lever arm of compression zone
- $z_{c,b}$ lever arm of compression zone at bottom of the joint
- $z_{c,t}$ lever arm of compression zone at top of the joint
- z_{eq} equivalent lever arm
- z_t lever arm of tension zone
- *A* area, surface area of the member per unit length
- A_0 area
- A_b total area of bolt, unthreaded part
- A_c area of the column
- A_{eff} effective area; of the flexible base plate, of the cross-section
- A_g area of the gross section
- A_h bearing area of the bolt head
- A_{net} net area
- A_s net area of the bolt, in thread
- A_{v} shear area
- B_e effective length
- $B_{t,Rd}$ design resistance of bolt in tension

 C_0, C_1 constant values

 $C_{e}, C_{T}, C_{X}, C_{K}$ efficiency parameter

 $C_{f,d}$ friction coefficient

E	Young's modulus of steel
F	force
$F_{b,Rd}$	design bearing resistance
$F_{c,b,Rd}$	design resistance in compression in bottom zone of the joint
$F_{c,fb,Rd}$	design resistance of beam flange in compression
$F_{c,Rd}$	design resistance in compression
$F_{c,t,Rd}$	design resistance in compression in top zone of the joint
$F_{c,wc,Rd}$	design resistance of column web in compression
F_{el}	elastic limit
$F_{exp,fy/fum}$	resistance for the structural members obtained from the tests to failure
$F_{o,Rd}$	pull-out resistance
$F_{p,Cd}$	design preloading force
$F_{p,Rd}$	pull-through resistance
F_{Rd}	design resistance
F_{Sd}	applied force
$F_{t,Rd}$	design tension resistance
$F_{t,Sd}$	tensile force
$F_{t,ep,Rd}$	design resistance of end plate in bending
$F_{t,fc,Rd}$	design resistance of column flange in bending
$F_{t,wb,Rd}$	design resistance of beam web in tension
$F_{t,wc,Rd}$	design resistance of column web in tension
$F_{t,i,Rd}$	resistance of the <i>i-th</i> bolt row in tension
$F_{v,max}$	maximum shear force obtained in a test
$F_{v,Rd}$	design shear resistance
$F_{v,Sd}$	shear force
$F_{w,Rd}$	resistance of the weld per unit length
HAZ	Heat Affected Zone
Ι	second moment of inertia
I_b	second moment of inertia of beam
I_c	second moment of inertia of column
$\overline{S}_{j,ini}$	relative initial stiffness
$K_{i,e,20^\circ C}$,	$K_{i,pl,20^{\circ}C}$ elastic and plastic stiffness of the component, at ambient temperature
L, L_l	length, beam span
L_b	length of beam
L_b	free length of the anchor bolt
$L_{b,lim}$	maximal bolt length, when anchor bolt my be exposed to prying
L_{be}	embedded length of the anchor bolt
L_{bf}	length of anchor bolt above the concrete foundation
L_c	length of column
$L_{e\!f\!f}$	effective length of a T-stub
L_{eq}	equivalent length of the anchor bolt
L_w	length of fillet weld

 L_w length of fillet weld

$L_{w,eff}$	effective length of fillet weld
M	bending moment
M'	bending moment per unit length
$M_{j,Rd}$	moment resistance of joint
$M_{j,ult,d}$	predicted ultimate bending moment of joint
$M_{j,ult,ecp}$	experimental ultimate bending moment resistance of joint
$M_{pl,Rd}$	plastic bending moment resistance of member
M_{Sd}	applied bending moment
M_{sa} M_w	bending moment carried by the weld
N	normal force
N_{0} , N_{1} , N_{1}	
N_{ly}	axial force of the chord corresponding to the plastification
$N_{pl,Rd}$	resistance of cross section
N _{Sd}	applied axial force
$N_{u,Rd}$	design ultimate resistance of the cross-section
	prying force
$Q \\ R_d$	resistance of the connection
R_{fy}	plastic resistance of the connected dissipative member
S_i	stiffness of joint
$S_{j,sec}$	joint secant stiffness
Sj,sec Sj,ini	initial stiffness of joint
S _{j,ini} S _{j,ini}	initial stiffness of the joint
S _{j,ini} V	volume of the member per unit length
v V _{G,Ed}	shear force due to the non seismic actions
	shear force due to the resisting moments at the end sections of the beam
V _{M,Ed}	
$V_{pl,Rd}$	plastic resistance to the shear force
V_{Sd}	design shear effort
$V_{wp,Rd}$	design resistance of column web panel in shear
W _{ext}	external energy
W _{int}	internal energy
α	reduction factor of bearing resistance
$lpha_b$	factor for bearing resistance
α_d	factor of end distance and pitch for bearing resistance transformation parameter for shear loading
β β, β ₂ , β	
β_j β_j	joint coefficient
β_{Lw}	reduction factor for long welds
β_w	correlation factor
δ	deformation, beam deflection at midspan, component deformation
8	deformation of components in compression zone

- δ_c deformation of components in compression zone
- $\delta_{b,c}$ deformation of components in compression zone at bottom of the joint

$\delta_{t,c}$	deformation of components in compression zone at top of the joint
δ_{Cd}	deformation capacity
δ_t	deformation of components in tension zone
$\Delta \theta$	temperature interval
Δt	time interval
ε	strain
ϕ	joint rotation
ϕ_{pl}	plastic rotation capacity
ϕ_p	available plastic rotation
γ	*partial safety factor
γм	*partial safety factor for the resistance
ŶM,fi	*partial safety factor for fire
<i>үм</i> о	*partial safety factor for steel
<i>Үм</i> ь	*partial safety factor of bolted connections
γ _{Мw}	*partial safety factor for weld
Ύмs	*partial safety factor of slip resistance
γ _{Ms,ser}	*partial safety factor of slip resistance at serviceability
<i>Үм2</i>	*partial safety factor of net section at bolt holes
θ	temperature
$ heta_{ heta}$	temperature of the lower beam flange at mid span
θ_l , θ_2 , θ_i	angle between diagonal and the chord
σ	normal stress
$\sigma_{\prime\prime}$	normal stress parallel to the axis of the weld
$\sigma_{\!\!\perp}$	normal stress perpendicular to the axis of the weld
τ	shear stress
$ au_{\prime\prime}$	shear stress (in the critical plane of the throat) parallel to the weld axis
$ au_{\perp}$	shear stress (in the critical plane of the weld) perpendicular to the weld axis stiffness modification coefficient
η λ_1, λ_2	dimensions of the T-stub
$\frac{1}{\lambda}$	relative slenderness
μ_0 ,	degree of utilization
μ	stiffness ratio
ρ_{haz}	heat affected zone (HAZ) softening factor
ψ	shape factor
,	•

* in prEN 1993-1-8: 2003 are the partial safety factors for prediction of the resistance simplified:

ΥM0	partial safety factor of steel
<i>Ү</i> мі	partial safety factor of stability
YM2	partial safety factor of connectors (bolts, rivers, pins, welds, weld, plates in bearing)
Ү <u>м</u> з	partial safety factor of hybrid connections, or under fatigue loading
γ <i>M</i> 4	partial safety factor of an injection bolt
YM5	partial safety factor of joints in hollow section lattice girder
YM6,ser	partial safety factor of pins at serviceability limit state
<i>үм</i> 7	partial safety factor of high strength bolts

Indexes	6
20°C	ambient temperature
а	structural steel
b	bearing; bolt
с	calculation
cr	critical
d	design value
е	elastic
Ε	Young's modulus
ſ	failure, furnace
fi	fire design
HAZ	Heat Affected Zone
i	component
j	joint
m	member
max	maximum
min	minimum
pl	plastic
Rd	design resistance
Sd	design loading
t	time, duration on fire exposure
ten, t	tension
v	shear
w	weld
у	yield