List of symbols

- a throat thickness of fillet weld
- a_1 effective length of the foundation, length of the base plate
- a_c height of the column cross-section
- a_h size of the anchor head
- b width of angle leg, width of the base plate
- b_{th}, b_t, b_w width, effective width of the foundation
- b_s width of beam flange
- b_c width of the column cross-section, of column flange
- b_{eff} effective width
- b_{haz} width of heat affected zone
- b_p width of end plate
- e effective width of the flexible base plate
- c_{0} required concrete cover for reinforcement
- d nominal diameter of the bolt
- d_0 diameter of the bolt hole
- d_1, d_2 diameter
- d_h diameter of anchor head
- e eccentricity, distance from bolt to edge of T-stub, from edge of the angle
- e, e_x, e_a, e_b bolt distances
- e_0 eccentricity of the joint
- e_1, e_2 bolt end distance, in force direction, perpendicular to force direction
- e_x distance from bolt to edge of end plate
- f_a characteristic strength for local capacity in tension and compression
- f_{ahaz} characteristic strength of heat affected zone
- f_{cd} design value of compressive cylinder strength of concrete $f_{cd} = f_{ck} / \gamma_c$
- $f_{cd,g}$ design value of compressive cylinder strength of grout
- f_c characteristic value of concrete compressive cylinder strength
- f_j concrete bearing strength
- f_o characteristic strength for bending and yielding in tension and compression
- f_u ultimate strength
- f_{ub} ultimate strength of the bolt
- f_s characteristic shear strength
- f_{shaz} characteristic shear strength of heat affected zone
- $f_{we,d}$ design shear resistance of the fillet weld per unit length
- f_w characteristic strength of the weld metal
- f_y yield stress of steel
- f_{yav} average yield strength
- f_{yb} yield stress of the bolt
- f_{yc} yield stress of column
- g length of the gap
- g_1 leg length of fillet weld
- h, h_0, h_1 height, height of concrete foundation
- h_c height of column cross section
- h_{ef} length of anchor embedded in the concrete
- k stiffness coefficient
- k_c total stiffness coefficient of the compression zone
- k_{eff} total stiffness coefficient of one bolt row in tension
- k_{eq} total stiffness coefficient the tension zone
- k_i stiffness of component i
- k_j stress concentration factor
- k_θ reduction factor based on material temperature
\(m, m_3 \) distance from the bolt centre to the plate
\(m_1, m_2 \) distances from bolt to web of T-stub
\(m_{pl,Rd} \) plastic bending moment resistance of the base plate per unit length
\(m_x \) distance from bolt to beam flange
\(n \) distance from bolt centre to contact with the foundation
\(p \) bolt pitch
\(p_1, p_2 \) bolt pitch; in force direction, perpendicular to force direction
\(r \) lever arm
\(r_c \) fillet radius of column
\(r_t \) theoretical resistance obtained from the design model
\(r_i \) experimentally found resistance
\(t \) thickness
\(t_0, t_1, t_2, t_w \) thickness
\(t_e \) effective thickness of partial penetration butt weld
\(t_f \) thickness of flange
\(t_{fb} \) thickness of beam flange
\(t_{fc} \) thickness of column flange
\(t_g \) thickness of grout
\(t_h \) thickness of anchor head
\(t_p \) thickness of plate thickness, of end plate
\(t_{ic} \) thickness of column flange
\(t_w \) thickness of the column web
\(t_{wa} \) thickness of the washer
\(t_{wc} \) thickness of column web
\(w_1, w_2 \) distance between bolts
\(x, y, z \) axes
\(z \) lever arm
\(z_c \) lever arm of compression zone
\(z_{cb} \) lever arm of compression zone at bottom of the joint
\(z_{ct} \) lever arm of compression zone at top of the joint
\(z_{eq} \) equivalent lever arm
\(z_t \) lever arm of tension zone

\(A \) area, surface area of the member per unit length
\(A_0 \) area
\(A_b \) total area of bolt, unthreaded part
\(A_c \) area of the column
\(A_{eff} \) effective area; of the flexible base plate, of the cross-section
\(A_g \) area of the gross section
\(A_h \) bearing area of the bolt head
\(A_{net} \) net area
\(A_s \) net area of the bolt, in thread
\(A_s \) shear area
\(B_e \) effective length
\(B_{ld} \) design resistance of bolt in tension
\(C_{0s}, C_f \) constant values
\(C_{0s}, C_{tr}, C_{s}, C_k \) efficiency parameter
\(C_{f,ld} \) friction coefficient
E Young’s modulus of steel

F force

$F_{b,Rd}$ design bearing resistance

$F_{c,b,Rd}$ design resistance in compression in bottom zone of the joint

$F_{c,fb,Rd}$ design resistance of beam flange in compression

$F_{c,Rd}$ design resistance in compression

$F_{c,t,Rd}$ design resistance in compression in top zone of the joint

$F_{c,wc,Rd}$ design resistance of column web in compression

F_{el} elastic limit

$F_{exp,fy/fum}$ resistance for the structural members obtained from the tests to failure

$F_{o,Rd}$ pull-out resistance

$F_{p,Cd}$ design preloading force

$F_{p,Rd}$ pull-through resistance

F_{Rd} design resistance

F_{Sd} applied force

$F_{t,Rd}$ design tension resistance

$F_{t,Sd}$ tensile force

$F_{tep,Rd}$ design resistance of end plate in bending

$F_{t,fc,Rd}$ design resistance of column flange in bending

$F_{t,wb,Rd}$ design resistance of beam web in tension

$F_{t,wc,Rd}$ design resistance of column web in tension

$F_{t,i,Rd}$ resistance of the i-th bolt row in tension

$F_{v,Rd}$ design shear resistance

$F_{v,Sd}$ shear force

$F_{w,Rd}$ resistance of the weld per unit length

HAZ Heat Affected Zone

I second moment of inertia

I_b second moment of inertia of beam

I_c second moment of inertia of column

\bar{S}_{ini} relative initial stiffness

$K_{el,20^\circ C}, K_{el,20^\circ C}$ elastic and plastic stiffness of the component, at ambient temperature

L, L_1 length, beam span

L_b length of beam

L_f free length of the anchor bolt

$L_{b,lim}$ maximal bolt length, when anchor bolt may be exposed to prying

L_{be} embedded length of the anchor bolt

L_{bf} length of anchor bolt above the concrete foundation

L_c length of column

L_{eff} effective length of a T-stub

L_{eq} equivalent length of the anchor bolt

L_w length of fillet weld
L_{w,eff}
M
M'
M_{j,Rd}
M_{j,ult,d}
M_{j,ult,ecp}
M_{pl,Rd}
N
N_0, N_1, N_2
N_{1y}
N_{pl,Rd}
N_{sd}
N_{u,Rd}
Q
R_d
R_{sy}
S_j
S_{j,sec}
S_{j,ini}
S_{j,ini}
S_{j,ini}
V
V_{G,Ed}
V_{M,Ed}
V_{pl,Rd}
V_{sd}
V_{wp, Rd}
W_{ext}
W_{int}

\alpha
\alpha_b
\alpha_d
\beta
\beta, \beta_3, \beta_3
\beta_j
\beta_{lw}
\beta_w
\delta
\delta_c
\delta_{b,c}
δ_{c} \quad \text{deformation of components in compression zone at top of the joint}
δ_{d} \quad \text{deformation capacity}
δ_{t} \quad \text{deformation of components in tension zone}
Δ\theta \quad \text{temperature interval}
Δt \quad \text{time interval}
ε \quad \text{strain}
ϕ \quad \text{joint rotation}
ϕ_{pl} \quad \text{plastic rotation capacity}
ϕ_{p} \quad \text{available plastic rotation}
γ \quad \text{partial safety factor}
γ_{M} \quad \text{partial safety factor for the resistance}
γ_{M,bi} \quad \text{partial safety factor for fire}
γ_{M0} \quad \text{partial safety factor for steel}
γ_{M\theta} \quad \text{partial safety factor of bolted connections}
γ_{Mw} \quad \text{partial safety factor for weld}
γ_{\theta\theta} \quad \text{partial safety factor of slip resistance}
γ_{M\theta,ser} \quad \text{partial safety factor of slip resistance at serviceability}
γ_{M3} \quad \text{partial safety factor of net section at bolt holes}
θ \quad \text{temperature}
θ_{0} \quad \text{temperature of the lower beam flange at mid span}
θ_{1}, \theta_{2}, \theta_{i} \quad \text{angle between diagonal and the chord}
σ \quad \text{normal stress}
σ_{//} \quad \text{normal stress parallel to the axis of the weld}
σ_{\perp} \quad \text{normal stress perpendicular to the axis of the weld}
τ \quad \text{shear stress}
τ_{//} \quad \text{shear stress (in the critical plane of the throat) parallel to the weld axis}
τ_{\perp} \quad \text{shear stress (in the critical plane of the weld) perpendicular to the weld axis}
η \quad \text{stiffness modification coefficient}
λ_{1}, λ_{2} \quad \text{dimensions of the T-stub}
\bar{λ} \quad \text{relative slenderness}
\mu_{0} \quad \text{degree of utilization}
\mu \quad \text{stiffness ratio}
ρ_{\text{HAZ}} \quad \text{heat affected zone (HAZ) softening factor}
ψ \quad \text{shape factor}

* \text{in prEN 1993-1-8: 2003 are the partial safety factors for prediction of the resistance simplified:}
γ_{M0} \quad \text{partial safety factor of steel}
γ_{M1} \quad \text{partial safety factor of stability}
γ_{M2} \quad \text{partial safety factor of connectors (bolts, rivers, pins, welds, weld, plates in bearing)}
γ_{M3} \quad \text{partial safety factor of hybrid connections, or under fatigue loading}
γ_{M4} \quad \text{partial safety factor of an injection bolt}
γ_{M5} \quad \text{partial safety factor of joints in hollow section lattice girder}
γ_{M6,ser} \quad \text{partial safety factor of pins at serviceability limit state}
γ_{M7} \quad \text{partial safety factor of high strength bolts}
<table>
<thead>
<tr>
<th>Indexes</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>ambient temperature</td>
</tr>
<tr>
<td>a</td>
<td>structural steel</td>
</tr>
<tr>
<td>b</td>
<td>bearing; bolt</td>
</tr>
<tr>
<td>c</td>
<td>calculation</td>
</tr>
<tr>
<td>cr</td>
<td>critical</td>
</tr>
<tr>
<td>d</td>
<td>design value</td>
</tr>
<tr>
<td>e</td>
<td>elastic</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus</td>
</tr>
<tr>
<td>f</td>
<td>failure, furnace</td>
</tr>
<tr>
<td>fi</td>
<td>fire design</td>
</tr>
<tr>
<td>HAZ</td>
<td>Heat Affected Zone</td>
</tr>
<tr>
<td>i</td>
<td>component</td>
</tr>
<tr>
<td>j</td>
<td>joint</td>
</tr>
<tr>
<td>m</td>
<td>member</td>
</tr>
<tr>
<td>max</td>
<td>maximum</td>
</tr>
<tr>
<td>min</td>
<td>minimum</td>
</tr>
<tr>
<td>pl</td>
<td>plastic</td>
</tr>
<tr>
<td>Rd</td>
<td>design resistance</td>
</tr>
<tr>
<td>Sd</td>
<td>design loading</td>
</tr>
<tr>
<td>t</td>
<td>time, duration on fire exposure</td>
</tr>
<tr>
<td>ten, t</td>
<td>tension</td>
</tr>
<tr>
<td>v</td>
<td>shear</td>
</tr>
<tr>
<td>w</td>
<td>weld</td>
</tr>
<tr>
<td>y</td>
<td>yield</td>
</tr>
</tbody>
</table>