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Abstract. The basic energy equations due to axial deformation of 3D bar and beam element
with respect to the geometric non-linear deformation based on small strains are briefly de-
rived. The relations between nodal deflections and nodal forces are shown using the geomet-
ric stiffness matrix. The improved relations using all terms of the energy expression for the
axial deformation are derived. The influence of each component of deflection on the others
during the deformation with respect to the non-linear behavior of the element is clearly sepa-
rated. The basic ,geometric non-linear matrices, are derived. The energy due to deformation
caused by St.Venant torsion of 3D-beam element is taken into the account for the geometric
non-linear behavior of the 3D element.
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1. INTRODUCTION

Geometric non-linear behavior of dructures is of an increesing interest for many researchers.
Severd research papers have been published in recent years” ' ' 18 They are mainly ded with
plane frame second order andysis *> Work includes plane sted frames with semirigid connections
asisin Goto'swork * °, or at the works™ ® Toader's work™ is dedling with semirigid connections of
3D beams. The reaults of these theoreticd work is possble manly because of computer and
software developments. Trends in research on advanced analysis of sted frames are shown at * © 8,
Space gructura frameworks are intensively used since 1980's. Papers deding with these problems
are published in proceedings on Space structures” 8, and also the proceedings of Symposium of
International Association on Shells and Space Structures’. These types of structures alow us to built
domes of large spans, where the geometric non-linear behavior is of the significant importance,
Stability problems associated with these structures are afield, which is still open for research. There-
lations for the geometric nonlinear behavior can be expressed in more detail, and recent computer
and software developments dlows us to solve more complicated problems. Geometric nonlinear
behavior of structures described with the finite e ement method uses a geometric siffness matrix asis
derived by Przemieniecki, a*. The concept of a geometric stiffness matrix is based on the smplifying
assumption that the load applied on the structure is unchanged during the load step increment. The
energy expression is based only on the axid deformation of beam fibers. The shear energy due to the
torsion of the generd 3D beam is not taken into account. Also, the higher order terms in the energy
expression due to the deformation in the longituding axis are neglected a*. The resulting relaions,
when dl these higher order terms are used, are non-linear and depend on cross-sectiond properties
and materid properties of members and nodd displacements. These rdations include products of
severd joint displacements, which lead to an iterative procedure, published a ** **. The subject of
the work is to show more generd expressions for the geometric non-linear behavior of the 3D beam
element and 3D bar element than expressions, which use the geometric stiffness matrix.

The matrix reations, which are usudly derived using the higher order nonlinear terms in the energy
expression, sometimes looks non-symmetrical™®. This result is due to the fact that the matrix terms
rely on the nodal displacements of the dement from the previous load step increment. Badic , higher
order stiffness, matrices, which are based only on the materia and cross sectiond properties of the
member, are derived in the paper. The displacements, which affect the behavior of a structure, are
excluded from the matrices. An iterative procedure is recommended for the solution. This approach
permits a solution, which is completdy separate for high order terms of the energy expression for the
3D beam and bar elements. New cross-sectiona properties for the non-linear Saint Venant torsion
are derived. The derived solution cans be used with dready written finite dement computer
programs.

2. ASSUMPTIONS

The derivation is based on the following assumptions:
1) 3D members are sraight without any imperfections
2) Theloca coordinate system of the member follows the right hand rule and is coincident
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with mgor principa axis of the member

3) Navier's hypothesisis vaid for the cross-section of the member.
4) Torson is assumed to be Saint Venant type, i. g. warping is neglected.
5) The load step increment is finite and load is congtant during the load step
3. The basic rdations of non-linear equations
The relation between the nodd displacements and dement deformations is described by

u (X’ Y, Z) =a Uy (U]_,Uz,Ug, ------ Lh) (1)
where uisthe vector of the eement deformationsand U is the vector of nodd displacements.
Matrix ais the matrix of functions describing the geometrica relations between these displacements.
Non-dimensional coordinates are introduced as x = %,z = +,h = Z, where X, y, z ae
dimensonsin loca coordinate system and L isthe length of the 3D dement (Fig.1). For a3D bar we
have 6 degree of freedom and for the 3D beam we have 12 degree of freedom. Therefore 3D bar
element can resst the axia forces only and the 3D beam dlement is able to resist axia force, shearsin
the directions y and z, bending about y and z axis and Saint Venant's torsion about x axis (Fig.2).

The curvature of the beam due to bending in one direction is represented by the approximate
K >, Where r istheradius of the curvature of the beam and the u is deflection
of the beam in adirection perpendicular to the x axis due to the bending about y or z axis.
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Figure 1
For a 3D bar we have 6 degree of freedom and for the 3D beam we have 12 degrees of freedom.
Therefore a 3D bar eement can resst the axid forces only and the 3D beam dement isable to resst
axid force, shearsin they and z directions, bending about y and z axes and Saint Venant’s torson
about x axis (Fig.2). The curvature of the beam due to bending in one direction is represented by

the gpproximate expresson - = 1°¢  where r s the radius of the curvature of the beam and

x?2

theu is deflection of thebeamin a direction perpendicular to the x axis due to the bending about
y or z axis. The geometric relations for al these types of loads are derived by Przemieniecki a *.The
matrix a for the bar dement and for the beam element are written for the convenience as a'
matricesin the following expresson (2).
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The drain energy of the dement due to its deformation during the finite increment of the externd
load can be written asin (3).

a'= 3D bar dement 3D beam dement 2
1- x) 0 0
+(1- %) 0 0 -60¢-xh  +(¢- 3%+ 0
0 +(1- %) 0 - B(x?- X)z 0 +(2¢ - A% +1)
0 0 +(1- x) 0 - (- X)Lz - (1- X)Lh
+X 0 0 +(3X* - dx+1)Lz 0 - (¢ - 2 +X)L
0 +X 0 - (3C- Ax+)Lh (- 2P +X)L 0
0 0 +X X 0 0
+6(x° - X)h +(3X*- 27 0
+6(0¢ - X)z 0 + (3¢ - 2¢)
0 - Lz - Lxh
+(3° - X)Lz 0 - (x*-x3)L
- (3¢ - 2X)Lh +(x - x*)L 0
©)

U = +EQe’dV
\%

here V isthe volume of the dement, EisYoung's modulusand e is the longitudind strain. Consider
the genera 3D beam dement asit is subjected to the genera nodd loading as shown

X

Figure 2

in Fg.1. The deformed length of an infinitesmaly smdl dement (Fig.2) can be expressed as
(1+e)dx wherethe e isthe engineering axid strain and dx is the dements length. Applying Py-
thagora s theorem, the elongation of the dement may be expressed as
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[@+ X ]2 eed>(+ﬂudx+ +8‘4”—de +¢%ﬂWdX9 (4)
Tix (7] e Tix [} e Tx g
This can be smplified as
e €xo_ flu, lgfuo  , Ladlve , 1afiwo’ )

x 20 x Egﬂ_xfa Zgﬂxﬂ 2&qx b
Theright hand Sde of equation (5) represents the component of the Green strain tensor e, . For the

condition of smal strain, we can write (e )> = 0 and the Green tensor coincides with the
enginering dran  e,. We can adso neglect the term1 aeﬂgz compared toflu_ | Therefore, (4)
2€x9 T x
becames
_fu, Lave® , 1afwe' (6)

T T 2&xe 28Tk
The curvature of a beam subjected to the bending moment is expressed by

1 _ 9 %u, T . ©)
r, x? 9 x

where the subscript i refersto curvatures y or z according to the axis about which is the beam bent.
The dongetion of the fiber of the beam pardld to the longitudind axis x can be expressed. The
curvature strain k; can be expressed as follows

o - Ddx_(r, - y)df,- dx Dax _r, - z)df, - dx
“dx dx dx dx

Substituting equation (7) into (8) leadsto (9) for the bending strain e, due to bending at any point
y, z from the centroid

respectively k, =

(8)

2
ef= -yl 1 ©
x Mx?
This expresson may be added to (6). Theresultsis afina expresson for the nonlinear strain e, for a
3D beam subjected to axid force, shear and bending about both axisy and z. Since Saint Venant
torson has no effect on the longitudind strain expression, the find expresson for the longituding
drainis presented as

.2 % 2 ﬂZuy ﬂZuZ (10)
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Subdtituting (10) to the strain energy expression (3) resultsin (11) for potentid strain energy. The
shape functions from equation (1) are substitute to the expression (11). After that, Cadtigliano's
theorem (part 1) can be applied to the expression (11) with respect to the deflections uy, Wy, ......
U ,. We obtain the relations for the nodd forces S, , S, ........ S forthe3D baand S, S,
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........ Sy, for the 3D bar. The same procedure can be applied to the 3D bar or beam using the
proper shape functions from the equation (1). However, expanding this expresson is difficult due
to itslarge number of theterms.

_E Jau o aaTuo o 2Pu8 , 1y e’ 1afue’ Ty, afu, & fu, ofu,6° (11)
g%%ﬂxﬂ ¢ g g‘nxzfa 4%1[)(25 4%ﬂxg KEW g ﬂxgﬂxsz

ol Ty gy, Ty, aé[ug_aé[uy086[2U0 aéTUyoaé[uo ﬂuagluo
X 'nxy '|]x‘|]x2 289 o gﬂxze'ﬂxa X & & 5 811xray

_ad]uoaaTuo+'|1 Yy 0in
Wﬂ‘éﬂx g e %

Assume for the 3D bar  DL=(uy, - u)= congtant o for the 3D beam DL = (u, - u,) = congtart,

where is DL the dongation of the dement during the load step. This assumption is made & *. The
geometric giffness matrix ke may be derived based on this amplifying assumption. The nodd
forces given by the well known equation (12) isthe result.

S=(keg + kg)U (12)

S isthe vector of noda forces of the eement, U is the vector of the nodd displacements k ¢ is
the dadtic siffness matrix and K is the geometric stiffness matrix.

4. IMPROVED NON-LINEAR SOLUTION FOR THE GEOMETRICAL STIFFNESS

The assumption about the congant length of the eement (which implies the congant value of the
prestressng force H= EA DL in the member) is not made in this paper. The fird pat of the
derivation is presented for the 3D bar dement a.'°. Also basic rdation for the 3D beam eemert,
which did not take into the account the terms of the 4th power, was published by Vasek at .
Thelast part of the derivation, which includes terms of the 4th power for the 3D beam dement
in expression (11) for axiad strain energy is derived with the software support. After the described
mathematical operation is complete the final expresson for the nodal forces of the bar and beam
element is determined. The number of the terms which are taken into the account is more then one
thousand. The find equation for each force is possible to rewrite in matrix form. The results of the
derivation are shown in next paragraphs. The interesting feature of these reaults is that the
expresson for thetorsond moments S, and S, depends on terms which are actudly new cross
sectiond properties of the higher order. These are

K, = ¢p*dA, K,=gy'dA, K, =¢p’y2dA, (13)
A A A

We can cal these expressions "moments of inertia of second order”. Ancther feature of this ap-
proach is that each nodd force is dependent on a symmetrical square matrix which includes terms
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composed only from the cross-sectiond properties and constants. The non-linear influence of the
other nodd displacements are excluded from the geometric nonlinear stiffness matrices. Therefore is
possible to separate the influences of different nodd displacements on the observed noda force.
This gpproach leads to the expresson for each force which relies on the 6x6 matrices for the 3D
bar eement or 12 x 12 matrices for the 3D beam eement. The terms in the relations can have an
effect on the stability solution of the 3D space structure systems.

4.1The3D bar eement
The genera equation for the forces at the end nodes of a3D bar eement which isasfollows

S=ke U+(U" hU)+y (U qU)+u (U gU) (14)
whereindex j rdies ontheindex i of the evduated force asj=i+3 for i=2,3 and
j=i-3 for i=5,6
Uy U e arethenodd displacements (scaar quantities) which have the mgor effect on
the corresponding  force S
Kgi covveeenen isthe i-th row of the eadtic stiffness matrix,
o are sguare 6x6 matrices, which express the loading change during the load
step (correspondsto  the wel known geometricd tiffness matrix kg )
IR isthe 6x1 vector of node displacements
O L is Ssmply the transpose of vector U
(o T o ISR are quare 6x6 matrices which expressthe higher order termsin the longitudina

drain energy of abar
The above equation (14) can aso be written in the form:

S=S+S%+S (15)

where S¢  are forces corresponding to the dadtic linear cdculation, Sg are forces which corre-
spond to the geometricaly non-linear behavior of the structure (previoudy expressed by the
geometrically stiffness matrix), and last part Sq, expresses the influence of the higher order terms.
This form clealy demondrates the influence of the nodd  deflections which are acting
perpendicularly to the member axis. Matrices for the 3D bar dement can be obtain from the 3D
beam dement matrices of next section by assuming curvature (7) is zero. These conditions are
described in the following equetions

ﬂ2uy:0
%2 " oqx L

Tu, 1

- _(us - Us)-

Ifx L

2
b (16)
4.2 The 3D beam element

More complicated expression result for a 3D beam eement. The derivation procedure is Smilar

to that of a 3D bar dement. The general equation for nodal forces gpplied to a 3D beam, which
represent shear, axia force and bending, is
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S=ks U+ (U" ' U)+ U *h V) (17)
+4 (U 'el U) + U (UT "2 U) + 4y (UT 'e3 U) + U (UT 14 U)

where 'hy = -'h; are square 12x12 matrices which express the loading change during the loading
step (corresponds to, the well known, geometricd giffness matrix kg ). Superscript 7 or 1
expresstheinfluence of 7th or 1t node deflection as amgor influence
= R isthe corresponding row of the dagtic stiffhess matrix
U... ..Isthe 12x1 vector of noda displacements
'el, '+6e2 Je3 J+6e4 . are sguare 12x12 matrices which express the influence of higher order
termsinthe axid drain energy expresson of a3D beam eement
U, U, Usp, Uirgerrrennnns are the node displacements (scalar quantities), which have amagor
influence on the corresponding force S, where index i is 2 and index |
is6for theforces S, Sg, S, Sio, index i is 3andindex jis5 for the
forces S5, So, Ss, S,
Expressons for the torsond moments S;, S0 are dightly different. These forces represent Saint
Venant’ storson. The matrix equation for the noda torsona moment is asfollows:

S=kg U+ U "hU)+(U" *h U)+u (U 'glU) +u.s (UT g2 U) (18)

whereindex i is ether 4 or 10.

Matricesgl and g2 for thetorsond moment S, a the near end of the dement include the same
terms as matrices g1 and g2 for the torsond moment Sy, a the far end of the beam dement,
except dl these terms are negative. The basic difference between the expressons for bending
moments and shear forces is in the non-linear influence of the governing deflection u; which is
separated out of the matrix equation as a factor. The torsona moments are influenced only by the
torsona deflectionu, and uy. Equation (17) or (18) can be expressed in aform smilar to thet
of equation (15)

S=S+5 + S (19)

The 3D beam expresson for forces which correspond to the geometricaly non-linear terms, are
more complex then these for the 3D bar eement. Forces Sg which corresponds to the forces
which were caculated with the geometricaly stiffness matrix ke are now divided to two parts (U"
i U) and (U™ *h; U). Thefirst part (U" 'h; U) expressthe influence of the deflections at the far
end of the ement to the solved nodal force S. The second part (U *h; U) express the influence of
the deflections at the near end of the eement to the solved nodd force S. For the force S, the
matrix *h, = 0. Smilaly for theforce S, the matrix 'h; = 0. For the force S, and S; are matrices
"y = - 'h; and the terms reminds terms in the geometricaly stiffness matrix k. Thus, the effect of
the geometricaly non-linear behavior expressed by the approximate formula using the geometricd
diffness matrix is good for axid force, but the other non-linear influences to the shear forces and
bending and torsona moments are not taken into the account. These terms are important for the
dability solutions of a3D system. The matrix ‘h; is shown in equation (20). To show al the matrices
is beyond the scope of this paper. Only the main matrices are shown here. All matrices are
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published a™. The terms EA can be factored out of dl the stiffness matrices, E is the Young's
modulus and A is the cross-sectional area. The matrices 'hs and *hs which correspond to the shear
force S, are shown as an example of the matrices of other forces. All the other matrices, 'h; and *h,
have corresponding occupancy of nonzero terms in the same rows and columns as these two
matrices. The vaues of terms are different. Very interesting influences of noda displacements of the
element are derived by expressng the matrices from equation (17) and (18).

00 0O 0O 0 00O O O 0 O (20)
-6 -1 3 -1
0 102 o O 512 20L
-6 +1 +6 +1
0 1012 () 200 0 102 (et 200
-(ly+ +(Iy +
0 — 0 —=
2L2 L2
+1 -1 -1 +1
0 200 15 0 200 0
e 20 3 3
1= O 0 O 0 O 0 O O 0 0 0O O
3 +1 6 +1
0 512 200 0 10L2 20L|
0 1552 Z-Tt 0 1652 Z-TlL
+(1,+1) -0, +)
0 SR2) 0 y
L2 212
+1 +1 -1 -1
0 o ® 0 Fon i
-1 +1 +1 -1
0 = © 0 = 5
Matrix 'hs Matrix 'h (21)
O 0 0 0O 0O OOO O O 0 o0
o o 0 0 £ 0 7 000 220 7 0
0
0 =3 .
0
EA . L - 1 Eal?
0 0 5z 0 Sor 0 0 0 =z 0 o0 q 0
0 0 0
0 =3 s
512 517
0 0 0
0 = ot
0 0

Matrices 'el, 'e2, 'e3, 'e4 for shear forces S, and S , and smilarly for s and S, indlude the
same terms, however they are negative for 'el, 'e2, 'e3, 'e4 for theforces s and S, at the far end of
the dement. The same is true as for the torsond moments S, and Syo. Therefore, only matrices
'el, 'e2, 'e3, 'e4 need to be written to express the forces S, and force S;. The matrices 'el, 'e2,
'e3, 'e4 for the bending moments vary in a position and vaue of nonzero eements. The following are
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matrix expressons showing the non linear relations between internd forces and  deflections with
respect to the governing deflections which are asfactors out of the matrices.

S, shear forcein ydirection:

Matrix expresson with matrix el for theforce S; (229)
éu, UT e 0 0 0 0 O 0 O 0 0 0 Ou éu,
Cu, U 0 e 0 ey, Y
e’2y e 35L° u e’2y
N - +36A -9A - 36A -9A 1 A ”
§U3L:I g) 353 7012 0 353 7012 3 §u3g
e u +3(3ly+1;) -3(3ly+1;) 4 e u
éu4 U éo 513 0 513 u éu4 U
a\ - -9A +3A +9A oA -
§U5L,'I Géo 7012 70L 0 7012 H §u5lil
& U9 o -o le U

u gl 1 c 70L 7012 U als
2y, 0& 0 0 0 O o 0 0 0 O U ey,

?u ljl %) 9A () 108A 9A|'1I ?u ",j
e-su % 7012 3513 702U €-s u
Cu, U 20 e 7ot 0 e o g U
e l:I "3(3|y+|z) +(3|y+|z) e e l:‘
al,n & — 0 T U &yl
&, U -oA oA +3A ug, u
gullu g‘) 7012 0 on 7012 70L gAlj éu“[]

) LOA

éleg g) 0 7012 70|_H éJlZg

Matrix expresson with matrix e2 for the force S;: (22b)
éu, 0 0 O 0 0O 0 0 0 O 0 0 0w éuu
é, u -108A -9A AU & 0
alz2 go 3503 oz 0 02( gY2y;
PORVARP -36A +9A +36A +9A 1 ALy
euz u g) 35° ( ) o’ 0 358 ( ) 70.° 3 €uzu
é -3(31,+l, -3(31,+l, U é
éu4|_] éo 513 0 58 u éu4(|
A s A +9A -3A -9A - ]
§U5';J g) 7012 70L 0 702 u ?uslil
Qs @ % 20 i Sl

u.eeu & 7o 7oL uétsu

Séu7 ue® o0 0 0 0 0O 0 O 0 0 0 ou éu7l]
e 'qé e ’q
¢ U -36A ; o
aUs g & 0 355 u glsq
&, U +36A Z9A -36A ~9A ueé, u
AU - 20 351° 700 0 353 7012 1 aUo
e uée 3@l +1,) 0 -@y+;) ue-u
Sl &0 N 515 3 el
€, u +OA %A 3A u
ey gO 707 0 7012 700 U gulll]

& -9A -9A([]
CEPD| 80 02 0 WH CEPY

10
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Matrix expresson with matrix e3 for the force S;: (22c)
éguy @ 0 0 O O 00 0O O O O Ouguy
& U & s -9A aé,. u
gk 8) 70.° 0 700 aa
Ay +0A +3A -9A A1 1
u, @ 7o w 0 o8 e,

u +3l,H,) -(31,+1,) - u
éu4 u 8) 2012 0 2012 géu4 U
wl o R % leuu
L %0 & 7 O aYs ()
6§u7lﬂ ® 0 O 0 O 00 O O 0 0 oueyu
e u ?@ A 0 28 U?u u
el ( < 02 7012 uesu
&, U -9 +3A +9A ug, u
gu9 u g) 7012 70L 0 7012 uéu9 U
~ A -@3I,H)) +(@3I,+1,) - A
y z y 'z
?‘Jlol,J g) 2012 0 2012 l:'éul(’lﬁl
.Y D @0 =T
e 1l:| 280 280 3Al:|§ 119
8. & 0 2506420
rix expresson with matrix e4 for theforce S; :
Mat th matrix e4 for the f S 22
T 4 <
éeguud 0 O 0 O 00 O O 0 0 Ouéu
& U& -2 -9A ug
éuzl] g) 702 0 70F l]éuzl]
At 1 +9A -9A -3A 1411 1
Qi O e w dew
#3+,) - (3Y+.) J
gl 2) 202 0 202 uey
~ 7 pad A A LN e
T A Al
el Y 250 O ueY
123, . 1 @ 1800 1)
GQuu® 0 0 0 0 00 0 O 0 0 0Ueyu
€08 0 Ge '
ek ( &' 702 702 ';JeU8 u
ey u -9A +9A 2 U, U
él'b ( g) 7012 0 7012 70L aéu9 (
- é) -(34+1;) 0 +(3l+,) - ,
é’ulOl,J ~ 202 202 ",Je'lwl;'
TR % 0 & B geg
2) 1u é 70L 280 70L 280 ué 1u
CRR Y 0 1840

11
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S;, shear forcein the z direction:

Matrix expresson with matrix el for the force Ss:

ay®d 0 0 0
é L'J +36A
agz2(e 3568
~ - +36A
?L%l;' g) 3518
gu u 23 +3(1,+31,)
esu 513
éu, 0D
é [_’je +9A
(B0 €
QU9 0 0 0
e u -36A
e @
QU 20
e u -3(,+31,)
éulOL,] g) 5yL2
u
anu g)
4 +9A
@leg 33 702

Matrix expresson with matrix e2 for the force S;:

e
©

R S

(N el el e el el Y el e i el i e N e N e\ -

eulu@ 0
euz 0D

>8>
w

oo R
oYY el

TR TP & D @D DG RAD 8

0 0
-36A
358
-108A
358
-3(}+3k)
518
19A
708
-9A
708
0O O 0
236A
358
-3(}+3k)
512
29A
70B
-9A
708

12

0 00O
e 0 =
0
0
=2 0
= 0 2
0 00O
2 0 %
19 0
7012
0
0
0 =%
0 0 0 O
-9A +36A
72 O st
+9A
702 0
0
o 0
& 02
0 0 0 O
+0A -36A
72 O st
0
0
0
+0A
0 Jo

0 0
-3(y+31,)
58
29A
701
0 0
+108A
358
+3(|y +31,)
5.3
A
7012
0 0
+3(}+3L)
518
0 0
-36A
356
-3()+3k)
518

o

19A

702

-9A
70L

o
NC/
=

N C
> (D> (D> (D~

g

e o

3
mo

D >:&>CD>\£D> m CD:E> D> (D
& & C
o\ .o.o.ooooooooooooco o oo

o

\o\o\no\n.o.ononononononocnonen e
=

Nl S~

N

5

70L

(239)

(23b)
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o

(6]
D D D D> D> D> D> D> D> (D> D> D> (D> D

Matrix expression with matrix e3 for the force S: (23¢c)
uyd® 0 O O 0 000 O 0 0 Oy
U& -o -3A +9A Ué " u
Uz g) 70 w0 uak
Y -21A +9A 161 T
U, H @ 7012 (3 0 701 3 ngs H
-yl y 3, P p
U, U g) 202 0 2012 geu4 u
Us U €0 2% 0 Uey, U
uaé Lué
Us ) é) o w» 0 7 25/;0lgléu6 1]
u, u g) 0 0 O 0 0 0 O 0 O O 3§u7 u
u 4 . . Ué "u
Uy @ 7% w0 el
u 29A -27A Ué, u
Ug ( go 702 0 702 l]éu9 U
~ A +(1,+31;) -(1,+31) , "
9“103 g) 2012 0 2012 3@%3

-3A

g-lug g) 0 280 l;lgullu
8.0 & % 0 Stk 0
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S5, bending moment about they axisat the near end:
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6, bending moment about thez axisat thenear end:

(-

N
D D D
C C

Matrix expresson with matrix el for the force S:

O O 00 O

T

E wC =

D ‘C:D> D> D> D> (D> D> D
[62]

e

8

D D D
c

Matrix expression with matrix e2 for the for

&0

%

0

+9A
7012

0

-27A
70L°

0

+9A
7012

-3A

70L

-9A
7012

0

-9A
7012

+3A
70L

+9A
70.°

-3A
70L
3l +l,)
2012
A
280
13A
70L
-(31,+1,)
2012
FA
280

+3A
70L
-(3l,+,)
202
tA
280
-3A
70L
+3ly+l;)
2012
-A

-3A

280

-3A

70L

A
280

0

Z3A
70L

16

0

S

-9A
702

OO0 0000000 000 § ©O0 O O O o o o o o

0

-9A
7012

+3A
70L

+9A

7012

+9A
7012

-9A
701

-(3ly+1z)
2012

3, +,)
2012

+3l,+l,)

202

-3y +l,)
2012

A
280

XA
280

o
—~
N
[yl
&

\onono\nononcr

> D> D> D> D> (D> (D
-

[ -
[ N

C
I~
N e e e exY ex Y ex Y e} e Y

Ueu

o
C
()]

[

3
NC

C c C C
2 woN P

\'C [
[(eYafafaYafafaYaYaYaYaYa Y aY ey e Y e Y ey e

N
o 8|>
(o)}

» (D> D> D> D> D>.(D> D> D>.(D> D> D> (D> D
c c
oo a1

c
©

OO RO

¢
ao.onoo oo o ooocooooco oo o

&
=]



Milan V&S ek

Matrix expresson with matrix e3 for the force S:
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Si1, bending moment about y axis at far end:

Matrix expresson with matrix el for the force Sy;:
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Si», bending moment about z axisat thefar end:

Matrix expresson with matrix el for the force Sy, (279)
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Matrix expresson with matrix e3 for the force S,: (27¢)
P N
éuuué 0 O 0 O 0 O O O 0 0 0 véu,u
é ué 4 U U
ala @ 0 2 (18l
éu,u & 2—8‘}) 0 TB’Z Uéu, u
é ueé -(@,+1) +@31,+1) ué u
éu4u go 6cy)|_ 0 6(y)|_ uéu4a
A - -A -AL +A +A 16 ]
eu, U € %0 S0 0 50 0 ueu, u
é u g) AL ué u
y als 80 aeYs
éu, U@ 0 O 0 0O 0 0 0 O 0 0 0 Uéyd
€ ue L, ue ‘a
gugy & 0 s uels U

-A A

€u, U © & 0 % uéy,u
e ue +@3ly+1;) - @y +l,) ue ~u
?ulol:I éj) 60L 0 60L l:|§u10L,a|
€u.. U A +AL A AL ug, u
U, o 0 > Uy
é 11U é . 280 420 . 280 280 3ALue 11u
> U . . a2
0 @ & 0 % 280 08420

Matrix expresson with matrix e4 for the force So: (27d)
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The following equations express the terms for the torsona moment &t the near end of the beam
element.
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S, , torsonal moment at the near end:

Matrix g1 for theforce S;: (289)
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4.3. Matrix formula for the whole dement

Also the matrix formulas can be expressed for the whole element, but it will be necessary to increase
the size of the matrices for the 3D bar element to 36x36, and 144x144 for the 3D beam element.
For the 3D bar e ement we can write

S=keU+Vvo' hv+ (w Vo' qV) - ([Ws Wa] Vo' gV) (29)
where the matrices are defined as
Vo' ..... IS 6x36 matrix composed from 6x6 matrices, where i-row corresponding to the force §
includes dl deflectionsu; , W, Us,.... Ug,, the other rows are zero
V.......Is 36x1 vector composed from vectors U
W.......Is diagona square 6x6 matrix with deflectionsu, , Uy, Us.,... Us ON the diagond
[Ws Wa ... is matrix formed smilarly asthe matrix w, only the submatrices corresponding
to thenear andfar end of the dement arein opposte order

Smilarly the eguation for the 3D beam dement:

S=keU+ (Vo' h7 v)+(vo' hlv) (30)
+wy (Vo' €Lv) +w, (Vo €2V) +ws (Vo' €3V)+w, (Vo edvV)
where matrices are as follows:
V- is 12x144 matrix composed from thel2x12 matrices, where i-row corresponding to
theforce S indudesdl deflectionsu;, , Uy, Us,.... Usa,, the other rows are zero
V..........1s 144x1 vector, composed from 12x1 vectors U
Wi, W2, W3, W, are square diagond 144x144 matrices. The main diagona includes deflections which

have sgnificant effect to the corresponding force. Basicdly we can say, that matrices

W, Wo express the influence of shear deflections and torsond deflection
Wz and Wy e express theinfluence of deflections dueto the bending moments
h7.........issquare 144 x 144 matrix with matrices ‘h; on the main diagond
hil........ issquare 144 x 144 matrix with matrices *h; on the main diagond
el......... issquare 144 x 144 matrix with matrices ' el on the main diagona
€2.........issquare 144 x 144 matrix with matrices ' €2 on the main diagond
(X T is square 144 x 144 matrix with matrices ' e3 on the main diagond

ed...... is square 144 x 144 matrix with matrices ' e4 on the main diagond

Let’'s express matrices Wi, W 5, Ws, Wy, Which incude deflections with sgnificant influence to the
corresponding forces. Matrices are diagona and postion of noda deflection on diagond express
influence of non-linear behavior to the corresponding forces.

Matrix wy = diag (0, Uy, Us, Uy ,Us, Uz, O, Uy, Us, Uso,Us, Lp) (31)
Matrix w, = diag (0, Us, Uy, Us , Up, Ug, O, Us, Ug, Uso, U, Ug)
Matrix ws = diag (0, Us, Us, O, Us, Us, 0, Us, Us, O, Us, Ug)
Matrix w,=diag (0, U1z, Us1, O, Uyg, iz, O, Ugp, Ung, O, Ugg, Uio)

It is possible to see how the far and near end deflections affect the opposite Sde of the dement if we
consder the nonlinear behavior, which in the red world actudly exists. Matrices which express
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influence of the bending arews and w 4. Matrices which express influence of the shear and the
torson, arew; , w,, We can easlly separate influencies of each sandad one deflection to the eement.

5. THE INFLUENCE OF THE SHEAR ENERGY

The influence on the geometricdly nonlinear behavior due to the shear energy should be dso
included in the expression for the energy of the eement. In the space framework it is the distribution
of bending and the torsona moments should be taken into the account aso. For space structures are
usualy used tubular sections so the Saint Venant torson express properly the behavior of the
member. We can make some basic assumptions about the shear deflection and about the cross
section. The energy of the dement due to the shear deflection can be expressed in equation (32)

U=30glV =3 (6g°5adV +3 (5g edV +3(6g°-aV (32)
v v v v

We can assume that the cross section of the beam dement is not deformable in ther plane,
therefore the longitudind change of the deformation uy is congtant with respect to the axis z and y.
With respect to these assumptions the cross sections of the beam are not deformed, they are only
rotated againgt each other under the Saint Venant torsion. For the pogition a axis X, eg. Zo =0, Yo
=0 we can write

Tuy _ Tuy _ =0 Tux _Tu _ 33
ﬂy_o’ﬂz =0 Gy 1y0_12_0 (33
We can now write the expression for the rest of the shear stresstensor as follows
— Ty o, — Ty o Ty
O A e v Ty (34)

Energy of the deformed beam due to the shear deflections can be expressed at equation (35)

2 "
oe 0? gﬂuzo B e % ﬂ;;yg 9 Tz, AL iﬂyﬂéyid o 3D
]

After the same procedure which was shown and explain before, we can recelve matrix expresson
for the noda forces with respect to the energy spent for the shear deformation due to the Saint
Venant torson. The terms in the matrices are Smilar to the vaues at the stiffness matrix with respect
to the axia deformation. For the materids with rdaively large shear modulus is therefore necessary
to indude the effect to the andyss. Find matrix equations for the nodd forces is amilarly as
previoudy, different for the forces due to shear and bending and different for the forces due to the
torson S, , and S0. We have for the first group of the forces the equation (36)
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S:GTA{eU+ leUUT ¢ U} (36)
and for the torsonal forces we have
S, = GZ—A“duuTr U, S = G7A1°duuTr U, (37)

where matrix “d and mairix *d are diagona square 12x12 matrices and on the main diagond there
are only two vaues. This is vaue 2 and 1 which correspond to the deflection u, and uyp for the
matrix “d and opposite for the matrix *°d. Matrices e, r are so called ,shear torsiond diffness,
12x12 matrices, and c is the matrix which express the influence of the torsond moments a one
end to the torsonad moment at the other end. The values of the matrix terms are Smilar to the vaues
of matrices which are expressng the influence of the axid forces. The only difference is in the
multiplication by shear modulus. For the stedl it is roughly 1/3 of the Young's modulus. This is ill
sgnificant effect interesting for the behavior in space. The siffnessmatricese , r and the matrix ¢ are
asfollows

Matrix e Matrix r (38)
0 0
2 1 2 1 2 L 2 L
*T e *g + B * -3
12 1 12 1 2 L 2 L
= oy P T oy ¥ -3 ¥ 3
e 0 0
PR w1 R L2 +L L
5 5 15 D 5 D D
1 4 1 L L 212 L L2
+ L -3 “E +5 = El
0
12 1 12 1 2 L 2 L
T s 3 + R "3
12 1 12 1 2 L 2 L
s . * s e *5 v 5 g
LA y e 0 0
1 * L 1 * 4 L ° +L 2|2
-3 3 + +zL 3 D 5 Ttz
+ £ +1 s s % =1
5 15 5 15
Matrix ¢ Matrix “d (39)
0 0
0 0
0 0
1 +4 2
0 0
0 0
0 0
0 0
0 0
+1 1 1
0 0
0 0
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To transform matrix expressons to the globa coordinate system we can introduce basic trans-
formation matrix asis

cos(a,x) cos(@a,) cos(a,)
cos(a,,) cos(a,,) cos(@,)
cos(a,,) cos(a,,) cosla,)

1

(40)

which transform forces a one end of the eement. The transformation matrix for the whole dement is
square matrix with matricest' on main diagond. We can transform dl vectors and matrices which
includes deflections according to the relation

DG =T D|_ (41)

where Dg isthe matrix of phenomenain the globa coordinate system, T is the trandformation matrix
and D, is métrix of the phenomenain the loca coordinate system.

6. CONCLUSION

The derivation of the complete equation has been presented for the geometric non-linear behavior
of the 3D beam with 9x degrees of the freedom at each end of the dement. All matrices which
express the materid and cross-sectiond influence on the end deflections of the dement, are square
and symmetricd. Thisisin agreement with the Betti’s law. The influence of the other nodd moations,
which express the non-linear behavior, are outside the matrices. However the operation has an effect
on the 9ze of matrices for the whole dement. Each noda force is dependent on dl nodd motionsin a
rather complex way. Therefore, the effect is expressed by the sze of the 12x12 matrices for each
nodd force. Matrix equations for the whole dement must ded  with 144x144 matrices. The iterative
procedure with the possbility to solve separately effects of each force is recommended. The
numerica example of the procedure is given a™°. However, for practical progranming it is more
useful to use non-matrix expressions. Preparing these expressons in the globa coordinate system is
relaively easy with the help of appropriate mathematicd software.
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