Syllabus of lectures

1. Introduction, history of steel structures, the applications and some representative structures, production of steel
2. Steel products, material properties and testing, steel grades
3. Manufacturing of steel structures, welding, mechanical fasteners
4. Safety of structures, limit state design, codes and specifications for the design
5. Tension, compression, buckling
6. Classification of cross sections, bending, shear, serviceability limit states
7. Buckling of webs, lateral-torsional stability, torsion, combination of internal forces
8. Fatigue
9. Design of bolted and welded connections
10. Steel-concrete composite structures
11. Fire and corrosion resistance, protection of steel structures, life cycle assessment
Connections

Welding ↔ in workshop
Bolting ↔ on site

On-site welding is also acceptable but should be avoided when possible as it brings some difficulties:
- maintaining the proper environment for welding to achieve good quality,
- need for completing/repair of corrosion protection,
- need for qualified workers,
- etc.

Design of connections:
- to comply to resistance of connected elements
 (connections are not the weak part of the structure)
- to resist calculated internal forces
 (connections might be the weak part of the structure)

Scope of the lecture

- Welded connections
- Bolted connections
- Distribution of forces among fasteners
- Connections in the structures
- Hybrid connections
Welded connections

Welds = rigid connections (no slip)

There are two basic types of the welds:
- Fillet welds
- Butt welds

Other types exist, but these are used in other industrial applications:
- Groove welds
- Spot welds
- ...many other, not typical for building industry

Fillet welds

Dimensions
- \(a \) effective throat thickness of the fillet weld
- \(L \) length

Stress components (need to be evaluated by the engineer):
- \(\sigma_{\perp} \) axial stress perpendicular to the throat
- \(\tau_{\perp} \) shear stress perpendicular to the axis of weld
- \(\tau_{\parallel} \) shear stress parallel to the axis of weld
- \(\sigma_{\parallel} \) axial stress parallel to the axis of weld (omitted)
Plasticity criteria of the weld (see Structural mechanics)

Huber–Misses–Henckey plasticity criteria (HMH)

It exists in these modifications:

* Tri-axial stress - \(\sigma_x, \sigma_y, \sigma_z, \tau_{xy}, \tau_{xz}, \tau_{yz} \) (usually not needed)

* Plane stress (often needed, it is used for check of fillet welds)

\[
\sigma_x^2 + \sigma_y^2 - \sigma_z^2 + 3 \tau_{xy}^2 \leq \left(\frac{f_y}{\gamma M_2} \right)^2
\]

* Uni-axial stress (known from the material tests)

\[
\sigma \leq \frac{f_y}{\gamma M} \quad \tau \leq \frac{f_y}{(\gamma M \sqrt{3})}
\]

Resistance check of fillet weld

Plasticity criteria for fillet welds

\[
\sqrt{\sigma_1^2 + 3 (\tau_1^2 + \tau_2^2)} \leq \frac{f_y}{\beta_w \gamma M_2}
\]

\[
\sigma_1 \leq \frac{f_y}{\gamma M_2}
\]

\(\gamma M_2 = 1,25 \)

\(\beta_w \) is correlation factor depending on steel grade

<table>
<thead>
<tr>
<th>Steel</th>
<th>S235</th>
<th>S275</th>
<th>S355</th>
<th>S420</th>
<th>S460</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_w)</td>
<td>0,80</td>
<td>0,85</td>
<td>0,90</td>
<td>1,00</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Stress components:

- \(\sigma_1 \) axial stress perpendicular to the throat
- \(\tau_1 \) shear stress parallel to the axis of weld
- \(\tau_2 \) shear stress parallel to the axis of weld

\(\tau_2 \) is omitted.
Example 1: Two fillet welds in parallel shear

Stress components
\(\sigma \) - axial stress perpendicular to the throat
\(\tau \) - shear stress perpendicular to the axis of weld
\(\sigma_1 \) - shear stress parallel to the axis of weld
\(\sigma_0 \) - axial stress parallel to the axis of weld

The side welds:
\[\tau_1 = \sigma_1 = 0 \]
\[\tau_s = \frac{F}{2a} \]

Because of zero values of \(\sigma_1 \) and \(\tau_1 \), the plasticity criteria is simplified to:
\[\tau_s \leq \frac{f_u}{\sqrt{3} \beta_m \gamma M_2} \]

Example 2: Fillet weld in perpendicular shear

The front weld:
\[\tau_s = 0 \]
\[\sigma_R = \frac{F}{a b} \]
\[\tau_\perp = \sigma_\perp = \frac{\sigma_R}{\sqrt{2}} \]

The plasticity criteria:
\[\sqrt{\sigma_\perp^2 + 3 \tau_\perp^2} \leq \frac{f_u}{\beta_m \gamma M_2} \]
\[\sqrt{\left(\frac{\sigma_R}{\sqrt{2}} \right)^2 + 3 \left(\frac{\sigma_R}{\sqrt{2}} \right)^2} = \sqrt{2}\sigma_R^2 \leq \frac{f_u}{\beta_m \gamma M_2} \]
\[\sigma_R \leq \frac{f_u}{\sqrt{2} \beta_m \gamma M_2} \]
Example 3: Welded connection of a cantilever

Stress components from M_{ed}
\[
\sigma_h = \frac{M_{ed}}{W_{we}} = \frac{F_{ed}}{W_{we}} \frac{e}{2} \frac{1}{a_h} h^2
\]
\[
\tau_\perp = \sigma_\perp = \frac{M_{ed}}{\sqrt{2} W_{we}}
\]

Stress from F_{ed}
\[
\tau_\parallel = \frac{F_{ed}}{2 a_h}
\]

Resistance check
\[
\sqrt{\sigma_\perp^2 + 3 (\tau_\perp^2 + \tau_\parallel^2)} \leq \frac{f_u}{\beta_w \gamma_{M2}}
\]

Example 4: Welded connection of T-cantilever

V transferred by the web:
\[
\tau_\parallel = \frac{F_{ed}}{2 a_h}
\]

M transferred by the whole weld cross-section
section properties (I_{we}, W_{we}) of the weld shape are required

Stress components from M_{ed}
\[
\sigma_h = \frac{M_{ed}}{W_{we}} = \frac{F_{ed} e}{I_{we}} \frac{1}{z}
\]
\[
\tau_\perp = \sigma_\perp = \frac{M_{ed}}{\sqrt{2} W_{we}}
\]

Resistance check (application of plasticity criteria) is required at critical points
- Point 1: $\tau_\parallel, \tau_\perp, \sigma_\parallel$
- Point 2: $\tau_\perp, \sigma_\parallel$
Example 5: Welded connection of a gusset plate

Stress components from $F_{y,Ed}$

\[
\sigma_x = \frac{F_{x,Ed}}{A_w} + \frac{M_{Ed}}{W_w} = \frac{F_{x,Ed}}{2aL} + \frac{F_{x,Ed}e}{2aL^2} = \frac{F_{x,Ed}}{2aL} \left(1 + \frac{6e}{L} \right)
\]

\[
\tau_{\perp} = \sigma_x = \frac{M_{Ed}}{\sqrt{2}W_{wpr}}
\]

Stress from $F_{x,Ed}$

\[
\tau_{\parallel} = \frac{F_{x,Ed}}{2aL}
\]

Resistance check

\[
\sqrt{\sigma_x^2 + 3\left(\tau_{\perp}^2 + \tau_{\parallel}^2\right)} \leq \frac{f_u}{\beta_{w} \gamma_{M2}}
\]

Example 6: Flange to web welds

Longitudinal shear flow V_f

(calculation is based on theory of elasticity)

\[
V_f = \frac{V_{Ed}S}{I} \quad [kN/m]
\]

Longitudinal shear stress

\[
\tau_s = \frac{V_f}{2a} = \frac{V_{Ed}S}{2aI} \leq \frac{f_u}{\sqrt{3} \beta_w \gamma_{M2}}
\]

the other stress components

\[
\tau_{\perp} = \sigma_{\perp} = 0
\]

(usually)
Long welds

Longitudinal shear flow V_L
(calculation is based on theory of elasticity)

Longitudinal shear stress

the other stress components
(usually)

Butt welds

Completely replace the cross-section
The type of the weld and the shape of the edge
should be designed by specialist

Two basic types exist:

- Full penetration weld
 no separate check of the weld needs to be made,
 resistance is the same as the section

- Partial penetration weld
 resistance is evaluated in similar way as for the fillet welds

Types of the butt welds

Full penetration (left) and partial penetration (right) V butt weld
Scope of the lecture

Welded connections

Bolted connections

Distribution of forces among fasteners

Connections in the structures

Hybrid connections

Nuts

Types

* Standard (height m is approx. 0.8 d)
* High (1.2 up to 2 d)

 used for bolts loaded by significant tension
* Low (0.4 d)

 for securing bolts - to avoid the bolts get loose
Washers

Washer is used on the part which rotate during bolt assembling (head or nut)

Purpose:
- to distribute the pressure evenly on the connected part
- to avoid surface damage during bolt rotation

Types:
- Standard washers
- Standard but hardened for slip-resistant connections (see later)
- Wedge washers for connection to flanges of I sections

Bolted connections

Connection types according to behaviour:
- Normal (bearing type)
- Slip-resistant = friction type (with preloaded bolts)

Connection types according to transferred load:
- Loaded in shear
- Loaded in tension

Combination of behaviour and load gives the category of connection, see the next slide
Bolts loaded in shear

Category A:
- standard (no preloaded bolts)
- should be checked for the resistance in:
 - shear
 - bearing

Category B:
- preloaded bolts, slip in the connection is allowed at ULS but not at SLS
- at SLS, it should be checked for the resistance in:
 - slip
 - bearing
- at ULS, it should be checked for the resistance in:
 - shear
 - bearing

Category C:
- preloaded bolts, slip in the connection is not allowed at all
- it should be checked for the resistance in:
 - slip
 - bearing

Shear resistance

Shear plane is passing through unthreaded part of the bolt

\[F_{\text{v,rd}} = i \frac{0.6 A f_{ab}}{\gamma M_2} \]

Shear plane passing through threaded part of the bolt

\[F_{\text{v,rd}} = i \frac{0.5 A f_{ab}}{\gamma M_2} \] for bolt grades 4.8, 5.8, 10.9

\[F_{\text{v,rd}} = i \frac{0.6 A f_{ab}}{\gamma M_2} \] for other bolt grades

- \(A \) full area of the bolt, \(A = \pi d^2 / 4 \)
- \(A_s \) stress area of the bolt, see the tables
- \(f_{ab} \) ultimate strength of the bolt
- \(i \) number of the shear planes
Effect of the bolt spacing
stress concentration is more significant for small spacing
small bolt spacing = smaller resistance
\[\alpha_b = \min \left(\frac{e_i}{3d_0}, \frac{p_i}{3d_0} \cdot \frac{1}{4}, \frac{f_{ub}}{f_u}, 1 \right) \]
\[k_1 \leq 2.5 \]

- \(t \): smaller thickness of connected elements in one direction (either the green or both red parts)
- \(d \): diameter of bolt
- \(d_0 \): diameter of hole
- \(f_{ub} \): ultimate strength of the bolt
- \(f_u \): ultimate strength of the connected elements

Bearing resistance

\[F_{b,bul} = \frac{k_1 \alpha_b d t f_u}{\gamma_{M2}} \]

Slip resistance

Required preloading force

\[F_{p,C} = 0.7 A_s f_{ub} \]

- \(A_s \): stress area of the bolt
- \(f_{ub} \): ultimate strength of the bolt
- \(n \): number of friction planes
- \(\mu \): friction coefficient
- \(k_s \): factor depending on bolt hole size (= 1 for standard holes, < 1 for oversized holes)

\[\gamma_{M3} = 1.25 \]

The friction coefficient depends on the surface preparation

- \(\mu = 0.2 \) for surfaces without special treatment
- \(\mu = 0.2 \) for surfaces cleaned with wire brush
- \(\mu = 0.5 \) for grit-blasted surfaces spray-metallized with zinc or aluminium
Slip resistance - bolt tightening techniques

Three methods of control of the preloading force are used

- Turn of the nut method (the most common, cheap and reliable method)
 the nut is first snug-tight and then rotated by additional 1/3, 1/2 or 3/4 turn
 (depending on the bolt length)

- Direct tension indicator tightening

- Calibrated wrench tightening (torque control method)
 Wrenches need to be calibrated in tension measuring device
to set the torque to desired value. When the desired value is reached, the click sound is heard and felt.

Number of bolts in the connection

Category A
\[n = \frac{F_{ed}}{\min \left(F_{s,Ed}, F_{b,Ed} \right)} \]
shear, bearing

Category B (no slip at SLS)
\[n = \frac{F_{ed}}{\min \left(F_{s,Ed}, F_{b,Ed} \right)} \] shear, bearing at ULS
\[n = \frac{F_{Ed,net}}{\min \left(F_{s,Ed}, F_{b,Ed} \right)} \] slip, bearing at SLS

Category C (no slip at ULS)
\[n = \frac{F_{ed}}{\min \left(F_{s,Ed}, F_{b,Ed} \right)} \] slip, bearing
Bolts in tension

The connection can be designed with
- non-preloaded bolts (category D)
- preloaded bolts (category E)

Ultimate Resistance in Tension

\[F_{\text{t,rd}} = \frac{0.9 \, A_s \, f_{ub}}{\gamma_{M2}} \]

- \(A_s \): stress area of the bolt
- \(f_{ub} \): ultimate strength of the bolt
Bolts in tension – Prying of bolts

Prying of the bolts in rigid end plate connection and the T-stub model

Equilibrium equation showing the increased bolt force because of prying of the bolts

Prying of the bolts increase the bolt force
Depends on thickness of connected plates

Scope of the lecture

Welded connections
Bolted connections
Distribution of forces among fasteners
Connections in the structures
Hybrid connections
Distribution of forces among the fasteners

Lap joint – short connection
- The bolt forces are considered to be equal

Lap joint – long connection
- The bolt forces are not equal, the end bolts carry higher load than those in the middle
- Reduction of resistance for long bolts is introduced (see EN 1993-1-8)

Long overlap joints – reduction of the resistance

The design shear resistance of all the bolts $F_{v,Rd}$ should be multiplied by reduction factor β_{lf} when the length L_j is more than 15 d.

$$\beta_{lf} = 1 - \frac{L_j - 15}{200}$$

but

$0.75 \leq \beta_{lf} \leq 1$
Distribution of forces among the fasteners

The bolts in flanges and web are designed separately.

The force is split according to area ratio:

- For forces in flanges:
 \[F_{\text{flange}} = F \left(\frac{A_{\text{flange}}}{2A_{\text{flange}} + A_{\text{web}}} \right) \]

- For force in web:
 \[F_{\text{web}} = F \left(\frac{A_{\text{web}}}{2A_{\text{flange}} + A_{\text{web}}} \right) \]

Elastic calculation:
- One solution, based on equilibrium equation and compatibility equations.
- Can always be used (no limitations).

Plastic calculation:
- More possibilities of force distribution.
- Rule: the bolts near the centre of rotation are considered to resist the shear force, the bolt far from the centre resist the bending moment.
- Certain criteria should be met to use plastic distribution (sufficient ductility).
Distribution of forces on rigid end plate connection

\[M_{pl, Rd} = 2 \left(N_1 r_1 + N_2 r_2 + N_3 r_3 \right) \]

\[M_{pl, Rd} = 2 N (r_2 + r_3) \]

\[N_j = \frac{N_i}{r_i} \quad \text{for} \quad i = 1, 2, 3 \]

\[N_j \text{ is equal to the resistance of one bolt in tension} \]

Scope of the lecture

- Welded connections
- Bolted connections
- Distribution of forces among fasteners
- Connections in the structures
- Hybrid connections
Connections at the structure

A - Beam to column joint
B - Column splice connection
C - Beam splice connection
D - Column base

Acting internal forces

The connections are designed to:

- acting forces - the connection might be weak part of the structure and future increase of the load might be limited by the connections
- resistance of the connected elements - the connections are not weak part of the structure and the resistance can be increased up to the resistance of the connected elements (typical situation for bridge design)
Bending stiffness of joints

Design simplification

In reality, rigid joints and hinges do not exist but all joints are semi-rigid
Precise evaluation of joint stiffness is complicated
In most cases, simplified assumption is taken into account:

* Almost rigid joint is considered as rigid joint
* Joint with small stiffness and bending resistance (almost hinge) is considered as simple joint

Classification with respect to joint stiffness

[Diagram showing moment-rotation curves for rigid joint, semi-rigid joint, and simple joint]
Influence of stiffness on moment distribution

Semi-rigid or rigid joints

Simple joints

Semi-rigid or rigid joints

Simple connections

Perfect hinge would be very difficult and expensive to manufacture (it is only designed in rare situations for complicated structures - bridges, etc.)

Hinge for beam to column connection does not exist
Simple connections are used instead

Simple connection have
- Small rotational stiffness
- Small bending moment resistance
- Satisfying rotation capacity

Three basic types exist (several modifications of each can be found)
- Simple end plate connection
- Web cleated connection
- Fin plate connection
End plate beam to column connection

Simple connection
- Only negative tolerance of beam length is allowed, the packing plate is used to compensate it
- Thin plate should be used (8 or 10 mm)
- Sufficient horizontal bolt spacing should be designed to ensure the rotational capacity
- Beam flange must not be connected to the plate
- The rotation is allowed by deformation of the end plate

End plate beam to beam connection

Simple connection
- Only negative tolerance of beam length is allowed, the packing plate is used to compensate it
- Thin plate should be used (8 or 10 mm)
- Sufficient horizontal bolt spacing should be designed to ensure the rotational capacity
- Beam flange must not be connected to the plate
- The rotation is allowed by deformation of the end plate
Web cleated beam to column connection

Simple connection
Gap should remain between the beam and the column to allow the rotation
The rotation is allowed by deformation of the angles and by slip of the bolts

Web cleated beam to beam connection

Simple connection
The rotation is allowed by deformation of the angles and by slip of the bolts
Fin plate beam to column connection

Simple connection
Gap should remain between the beam and the column to allow the rotation
The rotation is allowed by slip of the bolts

Scope of the lecture

- Welded connections
- Bolted connections
- Distribution of forces among fasteners
- Connections in the structures
- Hybrid connections
Hybrid Connections

Welds and bolts are combined together
Equal stiffness is required
only slip-resistant bolts and welds are allowed to combine
Not frequently used

Thank you for your attention