

1.	Introduction, history of steel structures, the applications and some representative structures, production of steel
2.	Steel products, material properties and testing, steel grades
3.	Manufacturing of steel structures, welding, mechanical fasteners
4.	Safety of structures, limit state design, codes and specifications for the design
5.	Tension, compression, buckling
6.	Classification of cross sections, bending, shear, serviceability limit state
7.	Buckling of webs, lateral-torsional stability, torsion, combination of internal forces
8.	Fatigue
9.	Design of bolted and welded connections
10	Steel-concrete composite structures
11	. Fire and corrosion resistance, protection of steel structures, life cycle assessment

Scope of the lecture	A.S.
 Tension and compression elements - examples Design of elements loaded in tension 	
Design of elements loaded in compression Behaviour of perfect element	
Real element Built-up element	
	3

	A
Buckling	
 Stability phenomena 	
• buckling occurs before f_y is reached in the cross-section	
 the most frequent reason for collapse of steel structures 	
Stability problems need to be considered for two types of elements:	
Perfect (ideal) element	
no imperfections	
 only theoretical, does not appear in reality 	
 theoretical solution leads to stability problem 	
Real element	
 different types of imperfection exist 	
real elements in everyday life	
leads to buckling resistance	
	24

	A A
Critical (Euler's) load	
The critical load is obtained from differential equation $y'' + \frac{N}{E I} y = 0$	
and the boundary conditions $x = 0 \rightarrow y = 0$	
$x = L \rightarrow y = 0$	
Solution	
$y = C_1 \sin(a x) + C_2 \cos(a x)$	
Applying the boundary conditions:	
$C_2 = 0$	
$\sin(a L) = 0 \rightarrow a L = \pi, 2\pi, 3\pi, \dots$	
Critical force	
$N_{cr} = \frac{\pi^2 E I}{I^2}$	

	A.
Buckling of element	
<u>↓</u>	1
Buckling can take these modes:	50
Double axis symmetric sections	XWY I Y
 Flexural buckling – deformation perpendicular to principal axes of the section 	
 torsional buckling – no lateral deformation but the element is twisted 	λy
• slenderness $\lambda_{j\gamma}$, $\lambda_{z\gamma}$, λ_{zw}	
Lini avial summatical sections	y
 Official symmetrical sections flexural buckling – lateral deformation in the plane of symmetry 	1 Jawe
 flexural-torsional buckling – lateral deformation perpendicular to the plane of symmetry and torsion 	-z
= slenderness λ_{y_2} λ_{y_2w}	λy
 Non-symmetrical sections 	4
 flexural-torsional buckling – lateral deformation in general direction and torsion 	Y TESY
• Slenderness λ_{vzw}	" " yzw
It is taken into account in simplified form	14
	32

 boundary conditions loading 	
 toduling stifferess ratio of hearing and columns 	
- sumess ratio of beams and columns	
Frames:	
sway frames	
Horizontal movement of the beam is not restrained	
non-sway frames	
Horizontal movement of the beam is not restrained	

	A
Built up elements	
The built-up elements are usually used for: columns internal elements of trusses	
Reasons:	
easy connection - gap	
structural analysis – increased stiffness of the element	

