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Fundamentals of Structural Design
Part of Steel Structures

Civil Engineering for Bachelors
133FSTD

Teacher: Zdeněk Sokol
Office number: B619
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Syllabus of lectures

1. Introduction, history of steel structures, the applications and some 
representative structures, production of steel

2. Steel products, material properties and testing, steel grades
3. Manufacturing of steel structures, welding, mechanical fasteners
4. Safety of structures, limit state design, codes and specifications for the 

design
5. Tension, compression, buckling
6. Classification of cross sections, bending, shear, serviceability limit states
7. Buckling of webs, lateral-torsional stability, torsion, combination of 

internal forces 
8. Fatigue
9. Design of bolted and welded connections
10. Steel-concrete composite structures
11. Fire and corrosion resistance, protection of steel structures, life cycle 

assessment
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Scope of the lecture

Tension and compression elements - examples
Design of elements loaded in tension

Design of elements loaded in compression
Behaviour of perfect element

Real element

Built-up element
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Elements loaded by axial force

 Tension, compression or alternating load

 Frequently designed for:
 trusses

 ties (tension)

 columns (compression)

 bracing diagonals (tension and compression)
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Multi-storey building

The columns of a multi-storey buildings are typical example of structural elements loaded in 
compression. No bending is introduced as the connections are usually designed as simple 
connection.

Elements loaded by axial force

6

tension

Industrial building -
technological platform

The columns are loaded in compression. No 
bending is introduced as the connections are 
usually as simple connection.
The resistance to horizontal load (e.g. wind load) 
is ensured by diagonal bracing, the diagonals are 
loaded in tension and compression, but this may 
alternate depending on the wind direction.

diagonals of 
the bracing

Elements loaded by axial force

wind
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Elements loaded by axial force

Trusses of a single-storey industrial building
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Trusses of a single-storey industrial building

Elements loaded by axial force
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Elements loaded by axial force

Roof bracing of a single-storey industrial building

10
Railway platform

The roof is made from arches 
supported on “backbone“ beam - it is 
truss made from hollow sections

backbone beam

elements 
supporting 
the arches

Elements loaded by axial force
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Trusses of Sazka Arena (now O2 Arena) in Praha Vysočany

Circular plan, diameter 135 m
The roof is made from trusses and pre-stressed ties all 
connected to the central ring

Elements loaded by axial force
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Elements loaded by axial force

Various types of towers
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Bracing and columns supporting the bridge deck of the Žďákovský Bridge spanning 330 m 
(Vltava river, South Bohemia)

Žďákovský Bridge (Vltava river) - South Bohemia

Elements loaded by axial force
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Elements loaded by axial force

The bridge deck is suspended on cables 
to the arch.
The cables are special elements loaded in 
tension as their behaviour is different 
from “standard” elements: the cables 
require pre-stressing and their response is 
non-linear, requiring non-linear analysis 
of the structure.
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Elements loaded by axial force
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Scope of the lecture

Tension and compression elements - examples
Design of elements loaded in tension

Design of elements loaded in compression
Behaviour of perfect element

Real element

Built-up element
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Tension elements

Typical cross-sections

Connection is important - the choice of cross section might be influenced 
by the way it I connected to the other elements
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Resistance of tension elements

Resistance:

 full cross-section (elastic resistance)

 net cross-section at holes for fasteners (ultimate resistance)
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Elements loaded in tension

Care should be taken about the 
stress distribution near the 
connection

Uniform stress distribution can be 
found “far” from the connection

Non-uniform stress distribution
is found near the connection when 
some parts of the element are not 
connected
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Net area Anet

 Failure along the straight line perpendicular to axis of the element (line 1)

 Failure along the zig-zag line for staggered holes (line 2)
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Scope of the lecture

Tension and compression elements - examples
Design of elements loaded in tension

Design of elements loaded in compression
Behaviour of perfect element

Real element

Built-up element
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Compression elements

Cross-sections:

 solid
 hot-rolled

 welded

 built-up
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Behaviour of compression elements

 Short elements (quite rare)
compression stress of cross-section is checked

yield limit should not be exceeded

 Long elements (all ordinary elements)
buckling resistance needs to be evaluated

24

Buckling

 Stability phenomena
 buckling occurs before fy is reached in the cross-section

 the most frequent reason for collapse of steel structures

 Stability problems need to be considered for two types of elements:
 Perfect (ideal) element

 no imperfections

 only theoretical, does not appear in reality

 theoretical solution leads to stability problem

 Real element 
 different types of imperfection exist

 real elements in everyday life

 leads to buckling resistance
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Scope of the lecture

Tension and compression elements - examples
Design of elements loaded in tension

Design of elements loaded in compression
Behaviour of perfect element

Real element

Built-up element
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Stability of perfect element

Perfect element is:
 Straight element (no bow shape)

 Pinned ends (perfect hinges)

 Centric loading

 No imperfections (residual stresses, etc.)

Solution was derived by Euler in 1744 

The element is stable for all loads smaller 
than the critical load

Indiferent equilibrium is achieved when the 
critical load is reached, i.e. very small 
lateral load leads to loss of stability



14

27

The critical load is obtained from differential equation

and the boundary conditions

Solution

Applying the boundary conditions:

Critical force

Critical (Euler’s) load
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Critical force

Critical stress

New parameter - slenderness of the element is introduced

and new section parameter - radius of gyration is used in evaluation of  the 
slenderness

Critical (Euler’s) load
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Buckling length

Critical force

Slenderness

Buckling length is introduced to take into account other boundary conditions 
(it relates the critical load of the element to critical load of element with hinges 
at both ends)

It can be derived from Euler’s formula and corresponding boundary conditions
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Buckling length

Euler’s formula

and boundary conditions for cantilever

Critical load of cantilever

Critical length
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Basic boundary conditions for buckling

buckling (critical) length = distance between 2 points of contraflexure

32

Buckling of element

Buckling can take these modes:
 Double axis symmetric sections 

 Flexural buckling – deformation perpendicular to principal axes of 
the section

 torsional buckling– no lateral deformation but the element is 
twisted

 slenderness y, z, zw

 Uni-axial symmetrical sections
 flexural buckling – lateral deformation in the plane of symmetry
 flexural-torsional buckling – lateral deformation perpendicular to 

the plane of symmetry and torsion
 slenderness y, yzw

 Non-symmetrical sections 
 flexural-torsional buckling – lateral deformation in general 

direction and torsion
 Slenderness yzw
 It is taken into account in simplified form
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Buckling length

Buckling lengths must be considered in two different planes (usually called “in plane”
and “out of plane”)

Generally: Lcr,y  Lcr,z

Example: column of the bracing
In plane of the bracing
Lcr,z = L / 2

Out of plane of the bracing
Lcr,y = L 

34

Other cases of buckling

Column with cantilever end

Two-bay column

The precise evaluation of buckling length 
is more complicated
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Buckling length of trusses

Chords

 In plane of the truss
Buckling length = distance between the joints

 Out of plane
Buckling length = distance between points of lateral restraint

Out of  plane (lateral restrain only at supports)

In plane

36

Buckling length of trusses

Diagonals

 In plane of the truss
In-plane stiffness of the plate reduces 
the buckling length 

Buckling length = distance of centers 
of the connections of the element to 
the plates

Approximately Lcr,y = 0,9 Ltheor.

 Out of plane
Thin plate can be bended, does not 
reduce the buckling length

Buckling length = theoretical length of 
the elements

Lcr,z = Ltheor

L cr,
y
= 0,9 L the

or

L cr,
z
= L the

or
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Buckling length of frames

Depends on:
 boundary conditions
 loading
 stiffness ratio of beams and columns

Frames:
 sway frames

Horizontal movement of the beam is not restrained

 non-sway frames
Horizontal movement of the beam is not restrained

38

Pinned frame

Sway frame
Horizontal movement of the beam is not restrained

Non-sway frame
Horizontal movement of the beam is restrained

Buckling lengths of frames

Lcr < h

Lcr > 2h
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Scope of the lecture

Tension and compression elements - examples
Design of elements loaded in tension

Design of elements loaded in compression
Behaviour of perfect element

Real element

Built-up element
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Buckling resistance of real element

Real elements have imperfections

 Geometrical imperfections
 initial curvature (bow shape) of the element axis,

 excentricity of the loading,

 deviation from the theoretical shape of the cross-section

 Material imperfections
 Residual stresses due to the welding, straightening or cooling

 Structural imperfections
 Imperfect function of hinges or fixed connections
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Results of experiments of compression members

Ideal element (σcr)

Real element 
(buckling resistance)
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Influence of geometrical imperfections

It is assumed the initial imperfection take the following shape

Differential equation of the deformed element

Boundary conditions

Solution
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Influence of geometrical imperfections

the deformation for               is equal to

where the multiplication factor                      indicates the

deformation increase with increasing load N and approaches to 
infinity when n is approaching to Ncr
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Influence of geometrical imperfections

Strength of the element is reached when the stress at mid-length 
of the column reach the yield limit fy

Stress representing the buckling strength                is substituted

The same equation at mid-length of the element, where the 

deformation                       is equal to
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Influence of geometrical imperfections

The equation

After some algebra Ayrton - Perry formula is obtained

which can be re-arranged into following

where  is buckling reduction factor

and 
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Derivation of buckling reduction factor

The Ayrton-Perry formula 

can be further simplified by substituting                     where                and

The formula above is used to derive the buckling reduction factor χ, in fact it is 
quadratic equation
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Buckling reduction factor

All the imperfections are expressed as geometrical imperfections – e0

 is imperfection factor, it includes “the amount” of imperfections
(it was obtained from tests and numerical modeling)

1
1

22








  



 

2
20150  ,,

48

Buckling curves

Imperfection factor  range from 0,15 to 0,76 resulting in 5 buckling curves

(the curve a0 is used only for some elements made from steel S460)

These are used for corresponding section shapes

Include the amount of imperfections introduced during manufacturing
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Design buckling resistance 

buckling reduction factor  should be evaluated for the corresponding slenderness 

relative slenderness

where

 is evaluated using the imperfection factor  (depends on cross-section type)

where

Buckling resistance of compressed element
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Scope of the lecture

Tension and compression elements - examples
Design of elements loaded in tension

Design of elements loaded in compression
Behaviour of perfect elements

Real elements

Built-up elements
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Built up elements

The built-up elements are usually used for: 
columns

internal elements of trusses

Reasons:
easy connection - gap 

structural  analysis – increased stiffness of the element

52

Battened column

Battened column composed from two channels
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Built up elements

Buckling in two directions must be considered

 perpendicular to mass axis (y-axis at the picture)
the resistance check is carried out as for “standard” elements

 perpendicular to non-mass axis (z-axis at the picture)
influence of  shear deflection of the connecting element (battens) and buckling
of partial element between battens needs to be considered

completely different procedure is adopted

it is not included in course of STS1
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Battened elements from angles

Special case:

 element is made from equal leg angles

 the buckling lengths Lcr,y and Lcr,z are (approximately) equal

 at least two battens are placed at thirds of element length (and another two 
are at the ends)

 buckling perpendicular to the mass axis (y-axis) governs, no need to 
calculate buckling resistance for buckling perpendicular to non-mass axis 
(z-axis)

z

y
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Thank you for your attention


