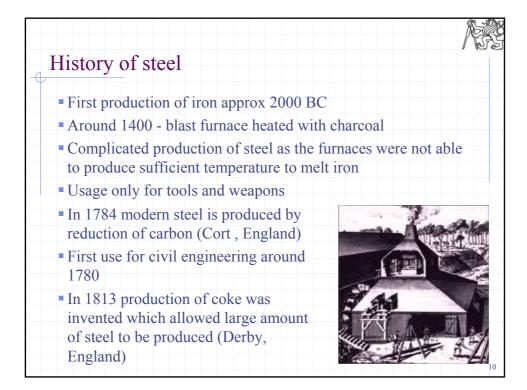
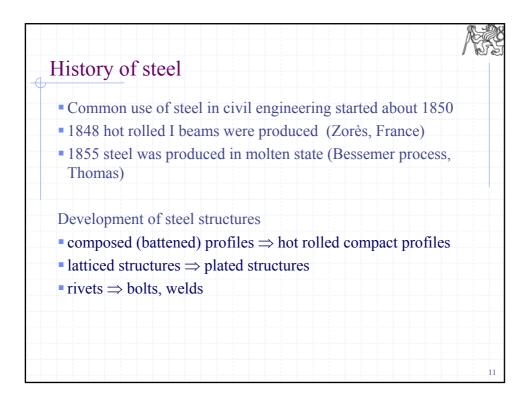
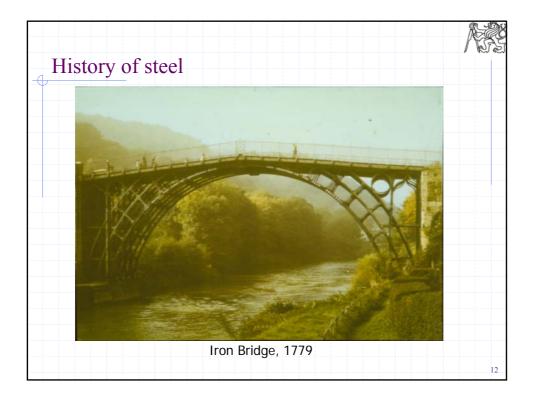
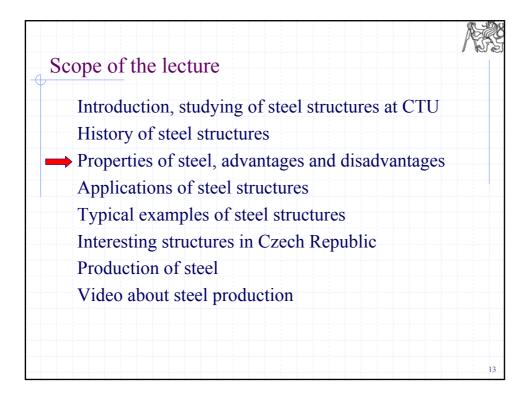
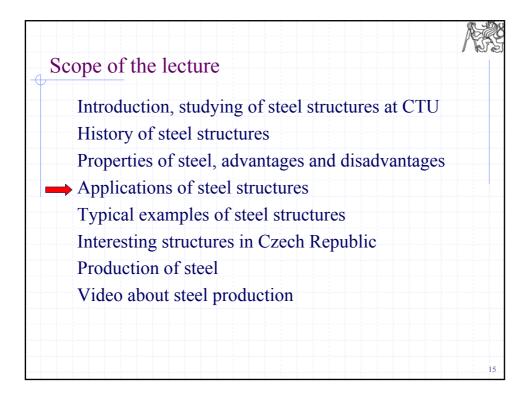

1.	Introduction, history of steel structures, the applications and some representative structures, production of steel
2	
3.	Manufacturing of steel structures, welding, mechanical fasteners
4.	Safety of structures, limit state design, codes and specifications for the design
5.	Tension, compression, buckling
6.	Classification of cross sections, bending, shear, serviceability limit stat
7.	Buckling of webs, lateral-torsional stability, torsion, combination of internal forces
8.	Fatigue
9.	Design of bolted and welded connections
10	Steel-concrete composite structures
11	. Fire and corrosion resistance, protection of steel structures, life cycle assessment

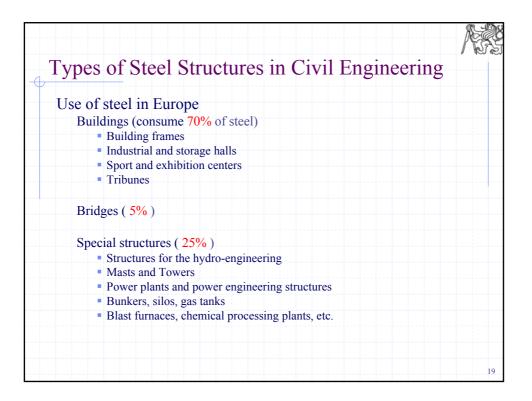


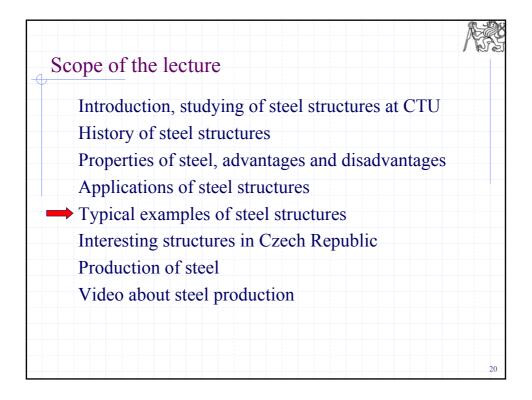

Lectures		
	of steel, properties of steel, manufacturing of steel structures, theoretical d to design of steel structures	
Seminars		
 practical ap 	pplication of your knowledge	
6 examples	- design of simple elements and connections	
visit to the	material testing laboratory	
the credit is	s obtained at the end of the course	
requireme	nts: attend the seminars (you are allowed to miss 2 seminars)	
	attend the classes and laboratory complete the calculation in time	
the require	ements will be precised by the teacher of the seminar	


F	Exam
	• You must complete the seminar first, i.e. get the credit from the teacher of the seminar
	 After that, you must register for a date of the exam using KOS system The dates will be available approx. at the end of April Registration without credit from seminar is not possible
	And last, you must study hard
	The exam consists from these parts:
	1. Theoretical knowledge of Steel Structures – 6 questions books, lecture notes, computers, mobile phones, etc. are not allowed
	2. Exam of Concrete Structures will be organized by Mr. Štemberk rules will be given by Mr. Štemberk
	You pass when you get at least 50% from each part (not the average from these)
	The final mark is then obtained as average of the steel and concrete part
	If you do not get over 50% in either steel or concrete, both parts must be repeated



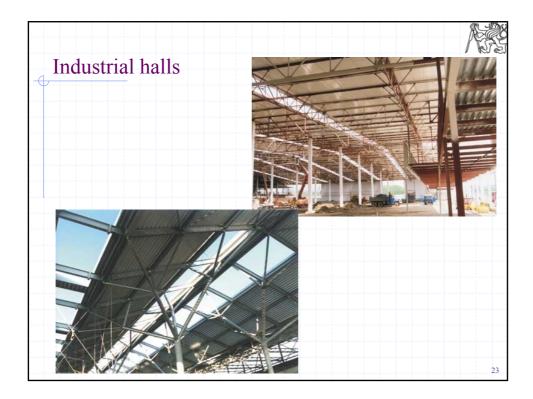


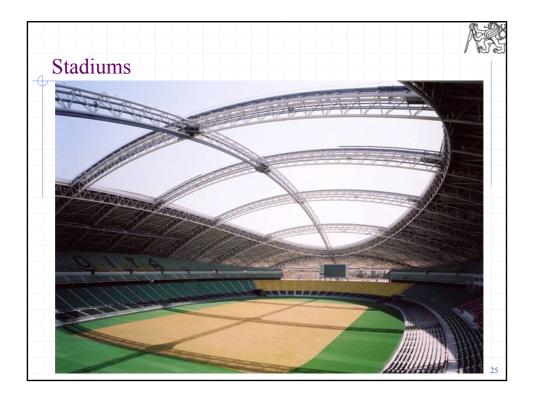

Advantages and Disa	idvanta	ges of Steel Structures
C		~
© The best common structural mat	erial	
\Rightarrow convenient for large spans	, tall buildin	gs
\Rightarrow allows building of slender	and light str	uctures
\Rightarrow replaces concrete every tir	ne the task is	s too ambitious for concrete structures :
© Relatively low weight v.s. carryi		
steel $7850/355 = 22$ (standard),	7850/800	= 10 (high strength)
concrete 2500/50 = 50	2500/100	= 25
timber $600/15 = 40$ aluminium $2700/180 = 15$	600/30 2700/300	= 20 = 9
© Fast development, production, as	ssembling r	eady to carry load (no need for
hardening)	, in <u>an an a</u>	
© Easy recycling (about 60% of ste	eel is made f	rom scrap)
		(), (), (), (), (), (), (), (), (), (),
☺ Low corrosion resistance, need f	or protection	1
[☺] Low fire resistance, need for pro	tection	
☺ High cost (also because of the pi		

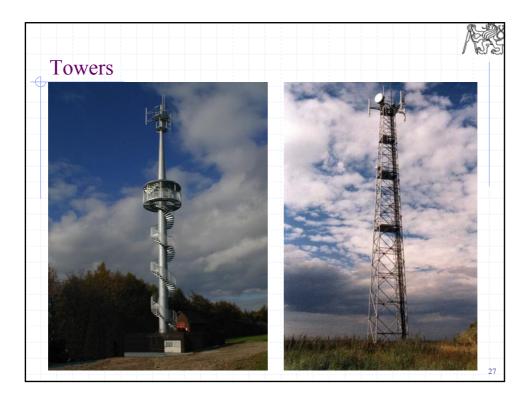


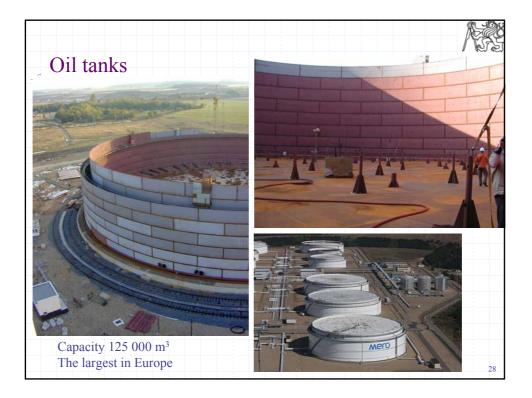
		ntensive indust	ry , a modern steel plant employs very
1 î	eople		
	consumption of 300 kg	g per man per y	ear can be considered a fair level of
econd	mic development		
- 771 1	• • • • • •		
	iggest steel producers		
• E	urope		
	 ArcelorMittal 	Luxembourg	97,2 mil. tons steel in 2011
	 ThyssenKryp 	Germany	17,6
	Evraz	Russia	16,8
• 0	versea		
	 Hebei Iron and Steel 	China	44,4
	 Baosteel group 	China	43,3
	Posco	South Korea	39,1
	 Wuhan Iron and Steel 	China	37,7
	 Nippon Steel 	Japan	
			37,7 33,4

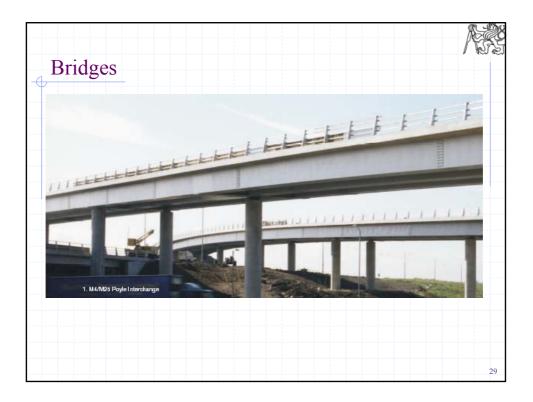
Rank (2012)	Country / Region	2007	2008	2009	2010	2011	2012
	World	1351,3	1326,6	1219,7	1413,6	1490,1	1547
1	People's republic of China	494,9	500,3	573,6	626,7	683,3	716
	European Union	210,2	198,2	139,3	172,8	177,7	169
2	Japan	120,2	118,7	87,5	109,6	107,6	107
3	United States	98,1	91,4	58,2	80,6	86,2	88
4	India	53,5	57,8	62,8	68,3	72,2	76
5	Russia	72,4	68,5	60,0	66,9	68,7	70
6	South Korea	51,5	53,6	48,6	58,5	68,5	69
7	Germany	48,6	45,8	32,7	43,8	44,3	42
	· · · · · · · · · · · · · · · · · · ·						
27	Czech Republic	7,1	6,4	4,6	5,2	5,6	5

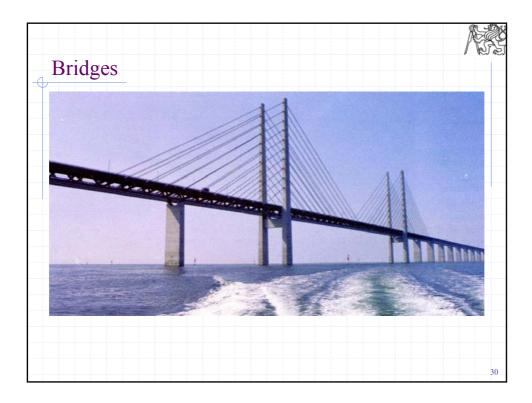

Ą	pplication of steel
E	Europe
	8 % of produced steel is used for civil engineering
	3 % for concrete reinforcement
	5 % for steel structures
0	Czech Republic
	15 % of produced steel is used for civil engineering
	10 % for concrete reinforcement
	5 % for steel structures
	Large amount of steel is used for reinforcement, this is caused by tradition of building reinforced concrete structure and by aim to save the steel for military application in 1960-1990
	It is expected the amount of steel for steel structures will increase slowly to
	level observed in Europe

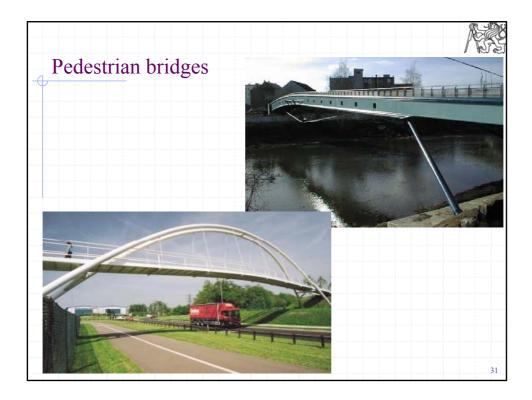


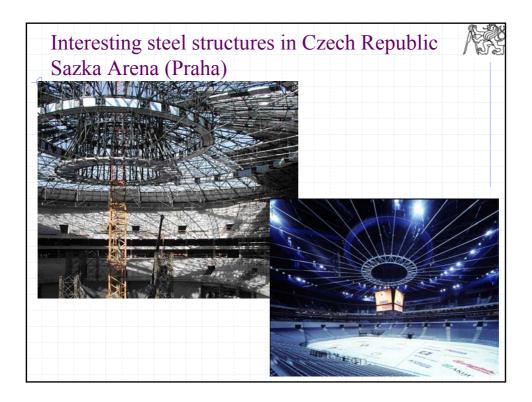


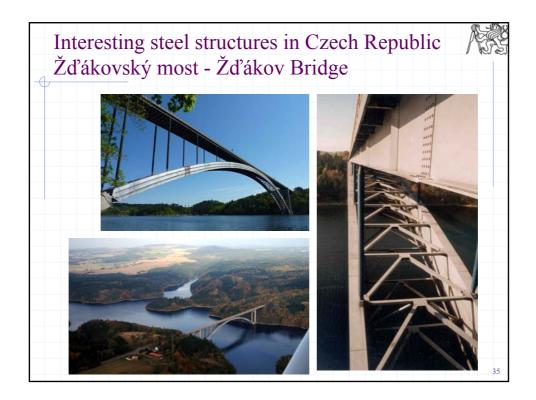


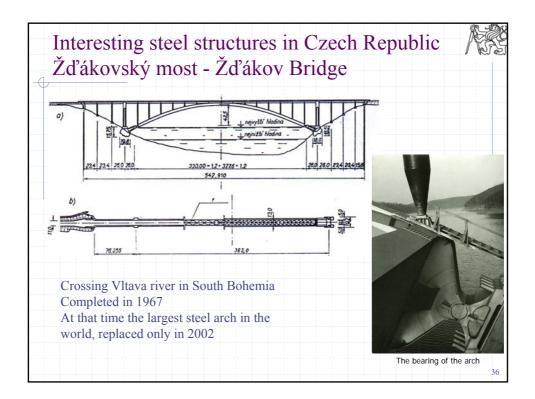


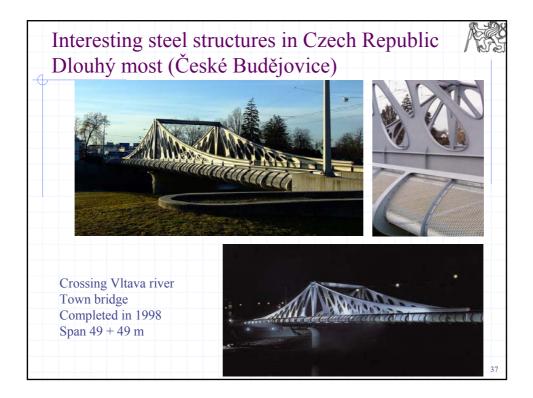


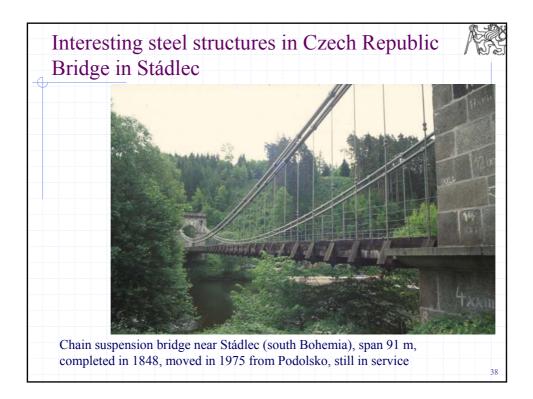


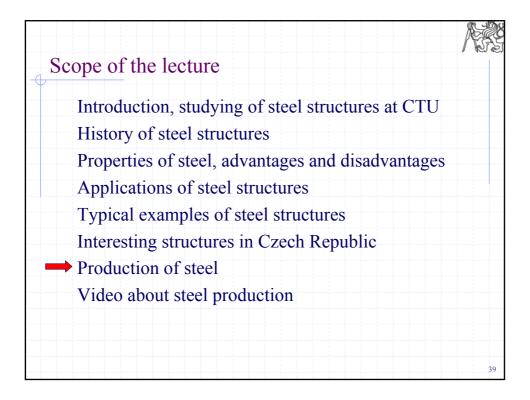


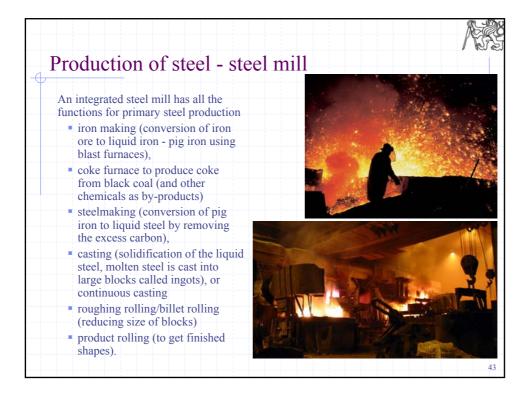


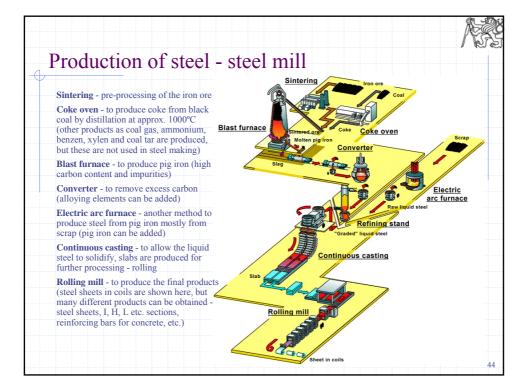


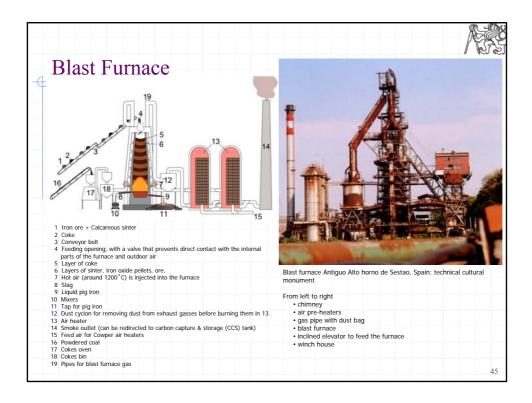




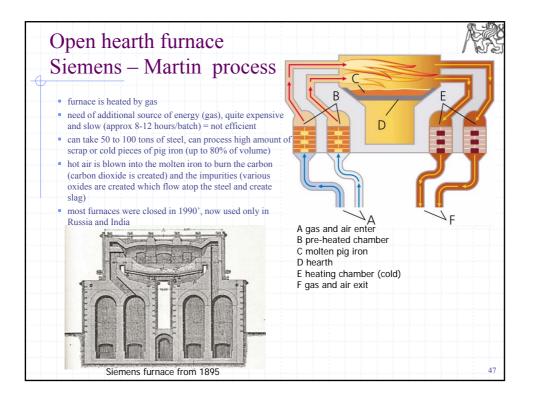


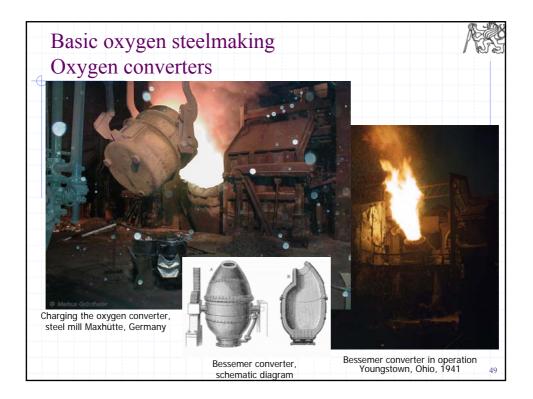


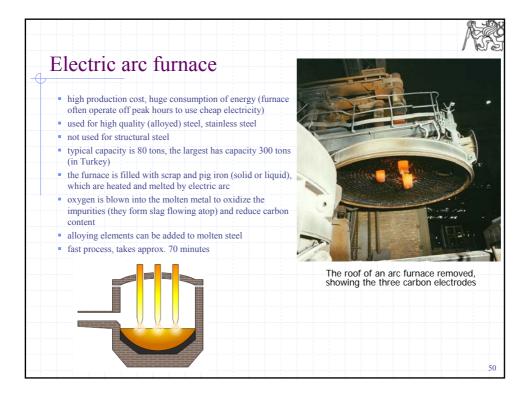


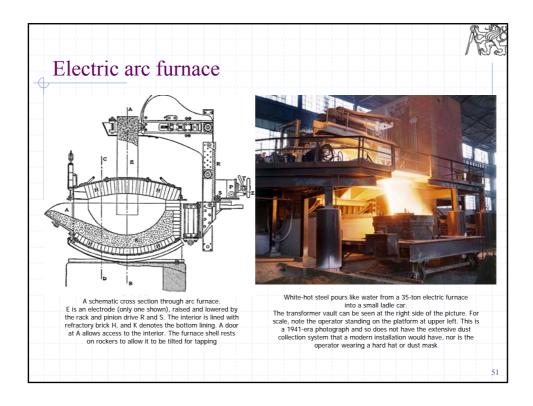

Steel - best structural material cons	idering the weight to strength ratio
Steel is an alloy of iron (Fe) and can influence various properties of steel	rbon (C). Other elements are also included to
Steel = malleable iron $\rightarrow C \le 2,1\%$	
Steel for civil engineering $\rightarrow C < 0$	0,2%
Mechanical properties	
 modulus of elasticity 	E = 210 000 MPa
shear modulus	G = 81 000 MPa
Poisson's ratio	v = 0,3
	$\alpha = 12 \times 10^{-6} \text{ K}^{-1}$
• coefficient of thermal expansion	
shear modulus Poisson's ratio	$G = 81\ 000\ MPa$ v = 0,3

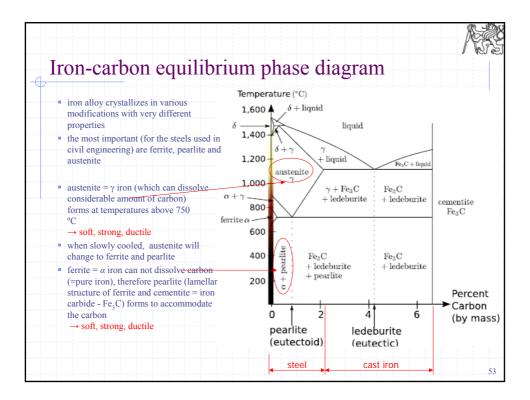
Produc	tion of pig iron
Steel is pro	oduced in a two-stage process.
First, iron	ore is reduced or smelted with coke and limestone in a blast furnace
iron o	$re = hematite (Fe_2O_3)$ and magnetite (Fe_3O_4)
coke =	almost pure carbon (produced from black coal)
The coke r	eacts with oxygen (O_2) to produce carbon monoxide (CO)
	$2 \text{ C} + \text{O}_2 \rightarrow 2 \text{ CO}$
	iron ore (here the reactions are shown for hematite) reacts directly with the high temperture, in the lower part of the furnace)
	$2 \operatorname{Fe_2O_3} + 3 \operatorname{C} \to 4 \operatorname{Fe} + 3 \operatorname{CO_2}$
The rest of	The iron ore reacts with the carbon monoxide (at lower temperture)
	$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$
The flux (l	imestone) is used to remove impurities (mainly silicon dioxide, $SiO_2) \rightarrow slag$
Products:	pig iron (contains approx. 4 - 5% of carbon and impurities (sulphur - S, manganese - Mn, magnesium - Mg, phosphorus - P), used for further processing to obtain steel)
	slag (used for road construction, etc.)

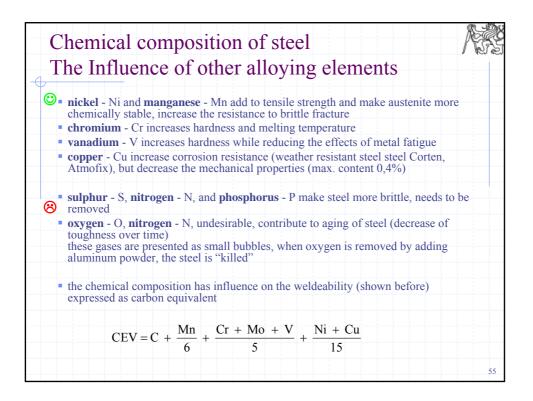

Pı	roduction of steel
	n the second stage, known as steelmaking, the impurities such as sulphur (S), hosphorus (P), and excess carbon are removed.
	Iloying elements such as manganese (Mn), nickel (Ni), chromium (Cr) and vanadium V) are added to influence the properties of steel
Т	he process is performed by one of these methods
	in oxygen converters (the most common method) in electrical furnaces (only for high quality steels, usually not for civil engineering)
Р	roducts: various types of steel
	he full process (from iron ore and black coal to final products - steel sheets and section often integrated to a single factory - steel mill

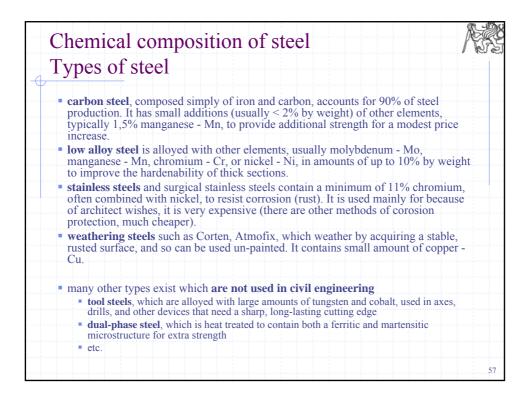


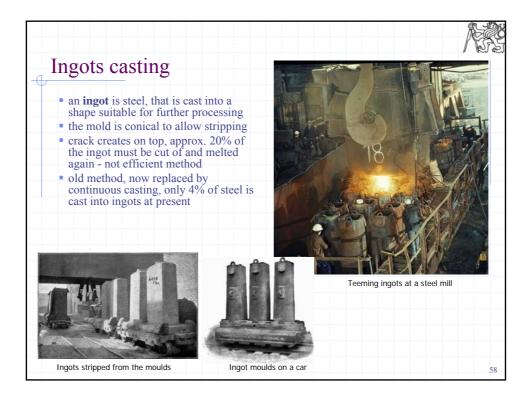


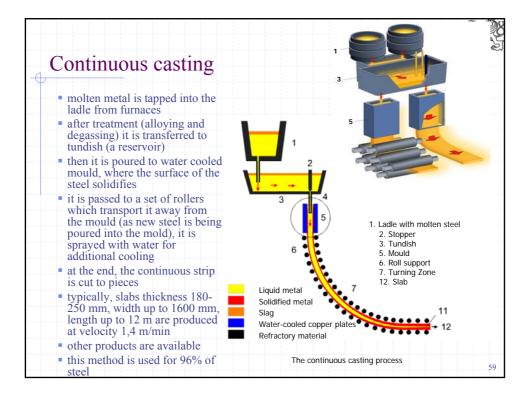

Steel production	
Goal: to eliminate the of excess carbon	
Discontinued methods	
in Bessemer converters, 1855-1968	
 in open hearth furnace (Siemens-Martin process), 1865-1990 	
the older method, now is rarely used and replaced by other methods	
Modern methods	
 basic oxygen steelmaking in oxygen converters, 1952-present 	F PAG
the most common method at present, approx. 60% of steel is produced this way	
 in electric arc furnaces , 1907-present 	
only for special types of steel - high electricity	A ser .
consumption, therefore expensive, not used for steel	
for civil engineering	

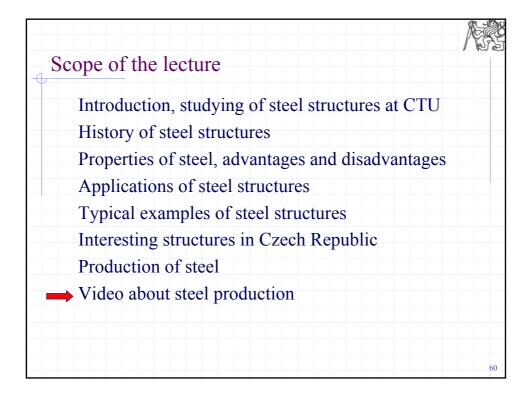





		ompos nce of C						1 400 4
• it in	creases tensi	n alloying ele ile strength a ity and fractu	and hardnes	SS				
	$l \rightarrow carbon c ctures)$	content < 2,1	% (carbon	is dilut	ed in iron	forming var	ious crystal	line
Fe ₃	C, which is v	pon content > very hard and gineering \rightarrow	l brittle)			n cementite	= iron carb	ide -
• wel	dability							
		essed as carboy mass)	on equival	ent (sub	stitute con	tent of the a	lloying eler	nents
	CEV - C +	$\frac{\mathrm{Mn}}{\mathrm{6}} + \frac{\mathrm{Cr}}{\mathrm{1}}$	+ Mo +	V 1	Ni + Cu			
	CDV = C +	6	5		15			
	CEV < 0,4	to ensure g	ood welda	bility				




II act traction	ant					
Heat treatm	lent					
Heat treatment is used t						
 when steel is cooled → soft, strong, ductil 		ir, it is normali	sed, ferrite a	nd pearlite are	e formed	
 annealing is the proce 	ess of heating the	steel to a suffi	ciently high	temperature to	soften	
it. This process occur growth. It is used to r					uin	
when steel is cooled	rapidly (quenched) austenite wil	l not change	to ferrite and	pearlite	
as the atoms do not "					•	
instead, martensite fo			d crystal (not	shown on the	phase	
diagram, it is not an e)				
\rightarrow hard, brittle, usua						
 martensite can be eas transformation temper 					ne	
 many high strength s 				0	andraaa	
and strength) - they a						
martensite exists	re quenence une t	ionipered ditti	only the des	in ou unito unit o	-	



	eel is steel that has some or all of the oxygen removed from the melt elmaking process.
 Liquid steels of the solubility 	contain dissolved oxygen after their conversion from molten iron, but of oxygen in steel decreases with temperature. As steel cools, excess es (the steel seems to be "boiling"because of the bubbles escaping), wholes or precipitate FeO \rightarrow not desired.
	lic deoxidizing agents to the melt will remove the oxygen
Types of steel	
 Killed stee gas bubbl 	I - steel with all oxygen removed, quietly solidify in the mould, with no ing out
Semi-kille	d steel - mostly deoxidized steel, but the carbon monoxide is presented as sma eating a porosity. This is removed after rolling. Mostly used for structural steel
 Rimmed Capped 	no deoxidizing agents, used for cold forming and drawing

