Schedule of education CST5 2+1 – ST 2015/16

	Lectures	Practical training
1.	Principle of prestressed concrete.	Task 1 A:
24.2	Concrete and steel for prestressed	Calculation of characteristics of
	concrete – mechanical characteristics,	concrete I cross section – area,
	connection with concrete and location in	moment of inertia, elastic section
	structure.	modulus, core abscissa
2.	Prestressing techniques – pretension and	Calculation of characteristics of
2.3.	post-tensioned prestressed concrete.	prestressed I cross section – area,
	Advantages and disadvantages of both	moment of inertia, elastic section
	prestressing techniques. Production –	modulus, core abscissa (idealised
	anchorages device and numerous other	uncracked and cracked cross section)
	details.	
3.	Design of prestressing force and its	Task 1 B:
9.3	eccentricity. Stage of prestressing, stage	Prestressed I cross section – calculate
	of service. Two characteristic values of	the stresses in bottom and top fibres by
	prestressing force at serviceability limit	given quality of pressing steel and
	states.	estimate short and long losses
4.	Prestressing force. Losses of prestressing	Task 1 C:
16.3.	force – short term (immediate) and long	For simply supported beam with given I
	term (service life) losses. Simplifying	cross section and given permanent load
	assumptions for calculation of short term	calculate rest of live load by full and
	losses.	partial prestress.
5.	Arrangement of prestressed tendons and	Task 2:
23.3.	ducts. Durability and cover of	Design simply supported pretensionsio-
	reinforcement. Fire resistance. Avoid to	ned beam loaded hollow core slabs:
	brittle failure.	- Design of prestress force and
6	Convises hility control. Stress limitation	Colouistion of short and long torm
0. 20.2	stages of prostrossing and service. Crack	
50.5.	control – full limited and partially	Chack the service limit state (stresses
	prestressed concrete Deflection control	deflection)
7	Illtimate limit states Design situations	- Check the ultimate limit states
64	Effects of loads Effects of prestressing at	check the utilitate limit states
0	ultimate limit states. UIS – normal force	
	and bending moment, shear force.	
8.	Anchorage zones – transfer of	- Calculation of anchorages zones for
13.4.	prestressing. Pre-tensioned members -	pretensioned simply supported beam
	transmission length, dispersion length,	
	anchorage length. Post tensioned	
	members – bearing stresses, bursting	
	stresses, spalling stresses.	
9.	Statically indeterminate prestressed	Task 3:
20.4.	structures. Design of prestressing using	Design the flat slabs supported by
	equivalent load and load balancing	columns.
	method. Application on complex spatial	- Choice the shape of the cables

	structures.	-Calculation the unity prestressing
10.	Design of prestressed concrete	
27.4.	structures with unbounded prestressing	
	reinforcement. Difference from design	FEM model – load combinations
	structures with bonded prestressing	
	reinforcement. Partially prestressed	
	concrete.	
11.	Pre- tensioned prestressed concrete	- Calculation pressing force and choice
4.5.	structures. Pre-tensioned framing	of prestressing cables
	systems. Types of precast concrete.	
	Double and triple T. Double T floor,	
	Hollow core slabs –use, advantages.	
	Other applications.	
12.	Post- tensioning structures. Applications	-Assembling of all Tasks
18.5.	and advantages of post tensioning. Post-	
	tensioning system. Conceptual design	
	and detailing of typical post- tensioned	
	floors. Other post tensioned structure.	

Rules for enclosure of subject CST5:

Credit:

- attendance max. 3 excused absence
- delivery of all tasks after preliminary check by teacher

Exam:

- receive the credit (in KOS)
- written part of exam (ca 2 hours): answer on given questions, practical example
- oral part of exam (ca 20 min.): supplementary questions from lectures and practical training