Prestressed Concrete

Part 6 (SLS - Serviceability control)

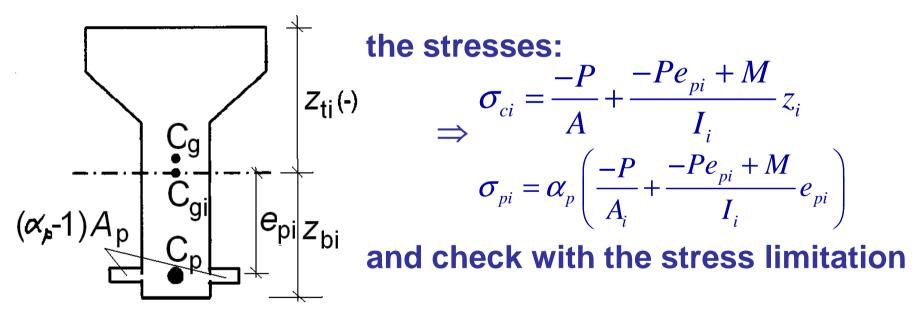
Prof. Ing. Jaroslav Procházka, CSc. Department of Concrete and Masonry Structures

Check of the serviceability limit states:

a) Stress limitation

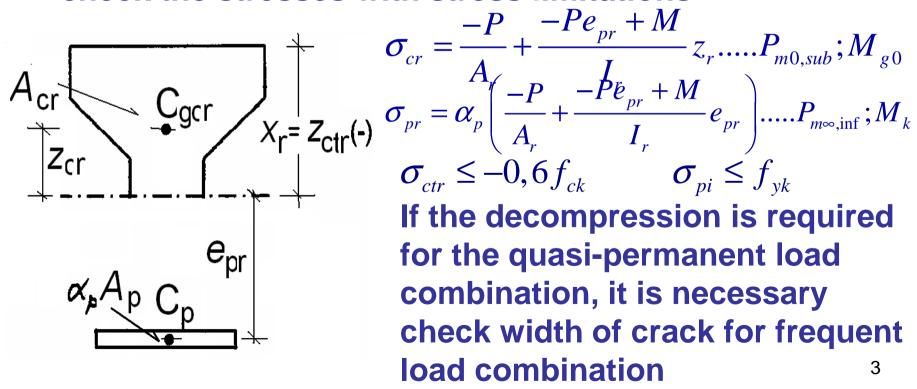
 Calculate for <u>the transformed (idealised) cross section</u> with full concrete section:

 $\boldsymbol{z}_{\text{cti}}$; $\boldsymbol{z}_{\text{cbi}}$; $\boldsymbol{e}_{\text{pi}}$; $\boldsymbol{A}_{\text{i}}$; $\boldsymbol{I}_{\text{i}}$; σ_{cti} ; σ_{cbi} ;



If the tension concrete stress $\sigma_{cbi} > f_{ctm}$, it is necessary to assume idealised cross section, where does not act the concrete in tension 2

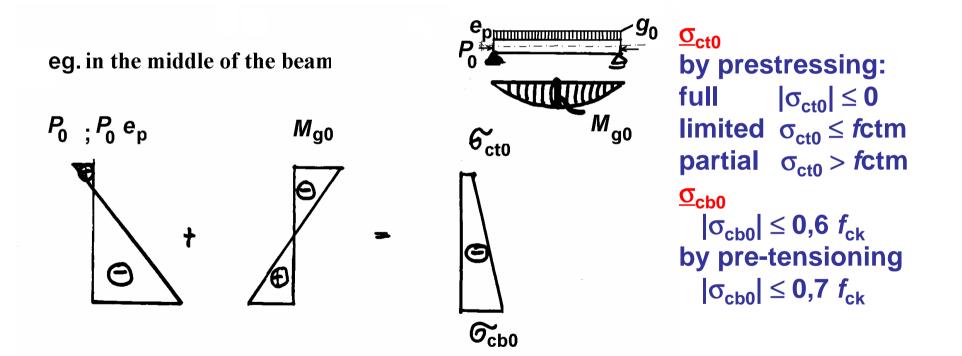
- If the tension concrete stress $\sigma_{cbi} > f_{ctm}$, it is necessary to assume idealised cross section, where does not act the concrete in tension
 - determine the location of neutral axis x_r from the equation: $A_{cr} z_{cr} = \alpha_p A_p e_{pr}$
 - calculate: $\mathbf{z}_{ctr} = \mathbf{x}_{r}$; \mathbf{e}_{pr} ; \mathbf{A}_{r} ; \mathbf{I}_{r} ; σ_{ctr} ; $\sigma_{pr} \Rightarrow$
 - check the stresses with stress limitations



Stage of prestressing

after transfer of prestressing – introduction the prestressing force into concrete – act:

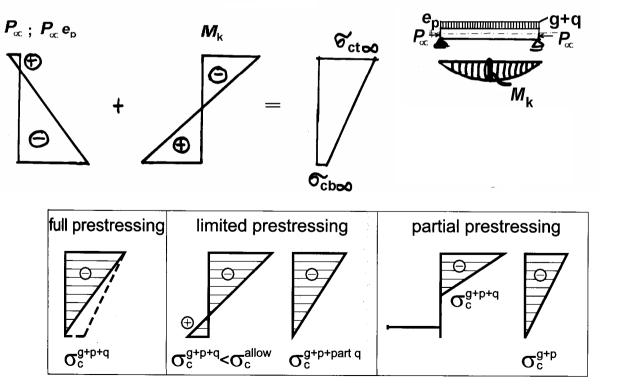
a) the initial prestress force P_0 at time t_0 with eccentricity e_p b) b) usually only self-weight $g_0 - Mg_0$



Stage of service

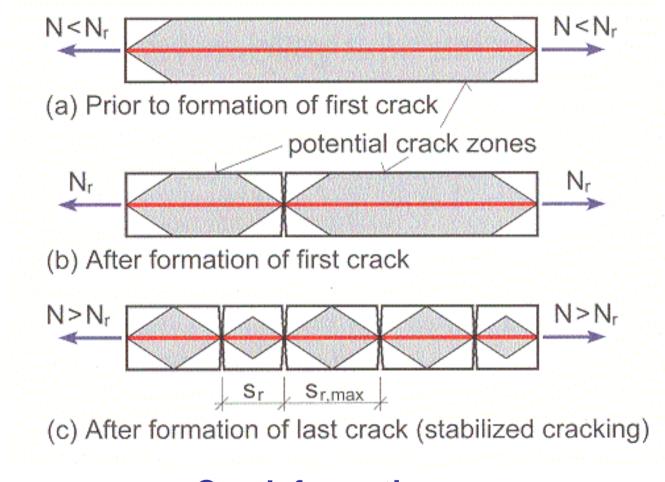
after all losses of prestressing force – act: a) the prestress force P_{∞} at time $t = \infty$ with the eccentricity e_p ; $t = \infty \cong 500\ 000$ hours $\cong 57$ years b) service load in prescribed combination $g + q - M_k$

eg. in the midle of the beam



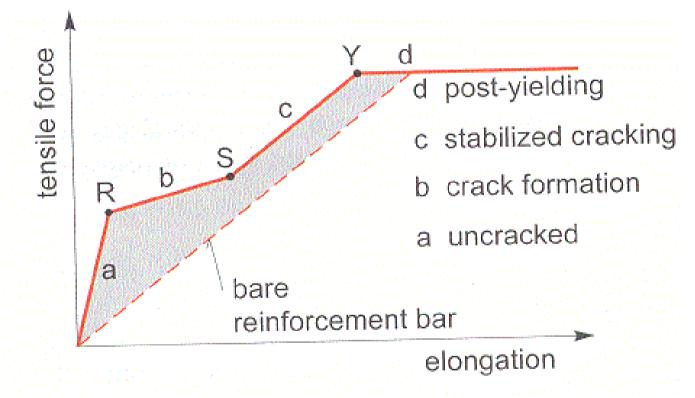
 $\begin{array}{l} \underline{\sigma}_{ct \approx} \\ |\sigma_{ct \approx}| \leq 0,6 \ f_{ck} \\ \underline{\sigma}_{cb \approx} \\ by \ pre-tensioning: \\ full \quad |\sigma_{cb \approx}| \leq 0 \\ limited \quad \sigma_{cb \approx} \leq f_{ctm} \\ partial \quad \sigma_{cb \approx} > f_{ctm} \end{array}$

b) Crack control

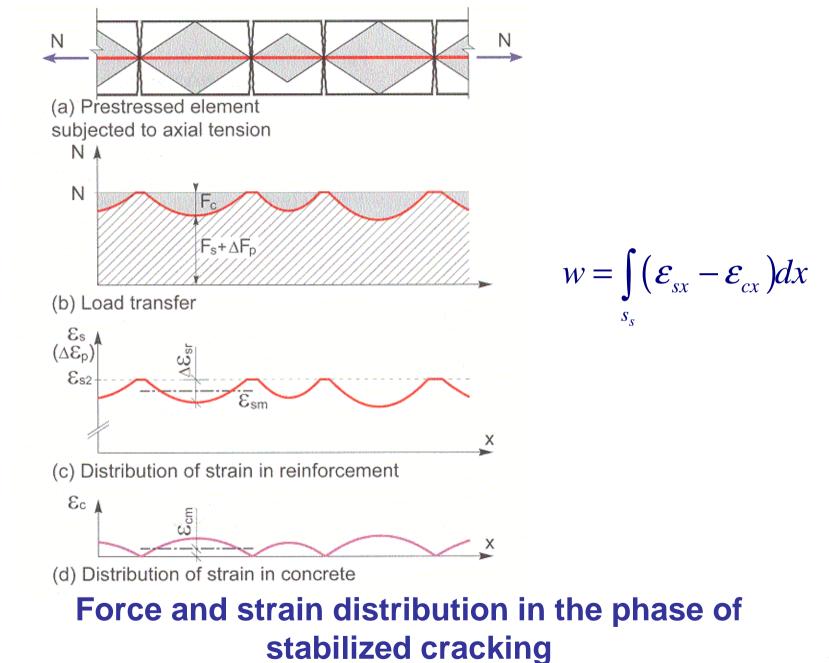


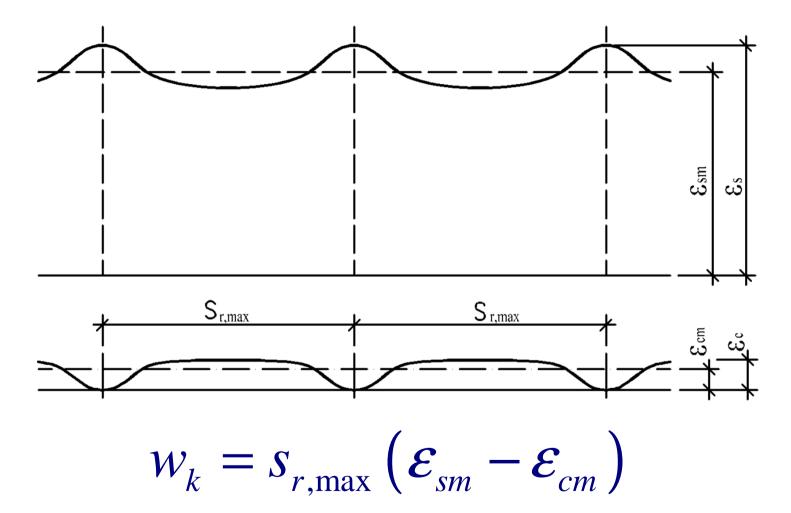
Crack formation

Formation of cracks



Idealized response of symmetrically reinforced element subjected to axial tension





$$w_{\rm k} = s_{\rm r,max} \left(\mathcal{E}_{\rm sm} - \mathcal{E}_{\rm cm} \right)$$

$S_{\rm r,max}$ maximum crack spacing,

\mathcal{E}_{sm} mean strain in the reinforcement under relevant combination of loads

 \mathcal{E}_{cm} the mean strain in the concrete between cracks

 $s_{r,max} = k_3 c + k_1 k_2 k_4 \phi / \rho_{p,eff}$

- c the cover to the longitudinal reinforcement
- ϕ the bar diameter
- $$\begin{split} \rho_{p,\text{eff}} &= (A_{\text{s}} + \xi_{1}^{2}A_{\text{p}})/A_{\text{c,eff}} \\ \xi_{1} &= \sqrt{(\xi \phi_{\text{s}} / \phi_{\text{p}})}; \text{ prestressing steel only} \\ \xi_{1} &= \sqrt{\xi} \\ \xi \text{ ratio bond reinforcement} \text{see next} \\ \phi_{\text{s}} \text{ largest bar diameter of reinforcing steel} \\ \phi_{\text{p}} \text{ equivalent diameter of tendon,} \\ \phi_{\text{p}} &= 1,6 \sqrt{A_{\text{p}}} \text{ for bundles, } A_{\text{p}} \text{ area of tendon} \end{split}$$

 $\phi_{\rm p} = 1,75 \ \phi_{\rm wire} 7 \ {\rm wire \ strand}, \ \emptyset_{\rm wire} \ {\rm wire \ } \phi_{10}$

Ratio of bond strength, ξ , between tendons and reinforcing steel

	ξ				
prestressing steel	pre- tensioned	bonded, post-tensioned			
		≤ C50/60	≥ C70/85		
smooth bars and wires	Not applicable	0,3	0,15		
strands	0,6	0,5	0,25		
indented wires	0,7	0,6	0,3		
ribbed bars	0,8	0,7	0,35		
Note: For intermediate values between C50/60 and C70/85 interpolation may be used.					

 $A_{\rm p}$ is the area of pre or post-tensioned tendons within $A_{\rm c.eff}$ the effective area of concrete in tension surrounding A_{c.eff} the reinforcement or prestressing tendons of depth, $h_{c.ef}$, where $h_{c.ef}$ is the lesser of 2,5(*h*-*d*), (*h*-*x*)/3 or *h*/2 Х A - level of steel centre of gravity $e_{2} = 0$ **B** - effective tension area, A_{c.eff} d h Α a) Beam \mathcal{E}_{1} Β $\mathbb{Z}_{\mathcal{E}_{2}=0} \mathbf{B}$ - effective tension area, $\mathbf{A}_{c.eff}$ d b) Slab h $\mathcal{E}_{\mathbf{I}}$ $h_{
m c,ef}$ - effective tension area for B В В $h_{
m c.ef}$ upper surface, A_{ct.eff} - effective tension area for d lower surface, A_{cb.eff} h **Member in tension** C) 12 E

- k₁ a coefficient which takes account of the bond properties of the bonded reinforcement:
 - = 0,8 for high bond bars
 - = 1,6 for bars with an effectively plain surface (e.g. prestressing tendons)
- k₂ a coefficient which takes account of the distribution of strain:
 - = 0,5 for bending
 - = 1,0 for pure tension
 - For cases of eccentric tension or for local areas, intermediate values of k_2 should be used which may be calculated from the relation:

 $\boldsymbol{k}_2 = (\boldsymbol{\varepsilon}_1 + \boldsymbol{\varepsilon}_2) / (2\boldsymbol{\varepsilon}_1)$

where \mathcal{E}_1 is the greater and \mathcal{E}_2 is the lesser tensile strain at the boundaries of the section considered, assessed on the basis of a cracked section

$$\boldsymbol{\mathcal{E}}_{sm} - \boldsymbol{\mathcal{E}}_{cm} = \left(\boldsymbol{\sigma}_{s} - k_{t} \frac{f_{ct,eff}}{\rho_{p,eff}} \left(1 + \alpha_{e} \rho_{p,eff}\right)\right) \frac{1}{E_{s}} \ge 0, 6 \frac{\boldsymbol{\sigma}_{s}}{E_{s}}$$

the stress in tension reinforcement assuming a crack $\sigma_{\rm s}$ section; for pretensioned members, σ s may be replaced by $\Delta \sigma_{\rm p}$ the stress variation in prestressing tendons from the state of zero strain of the concrete at the same level the effective reinforcement ratio $\rho_{p,eff} = A_p' / A_{c,eff}$ the area of the tension reinforcement in $A_{c,eff}$ the effective tension area

$$ho_{
m p,eff}
ho_{
m p^{\prime}}
ho_{
m p^{\prime}}
ho_{
m c,eff}
ho_{
m t}$$

- a factor dependent on duration of the load
 - $k_{\rm t} = 0.6$ for short term loading
 - $k_{\rm t} = 0.4$ for long term loading

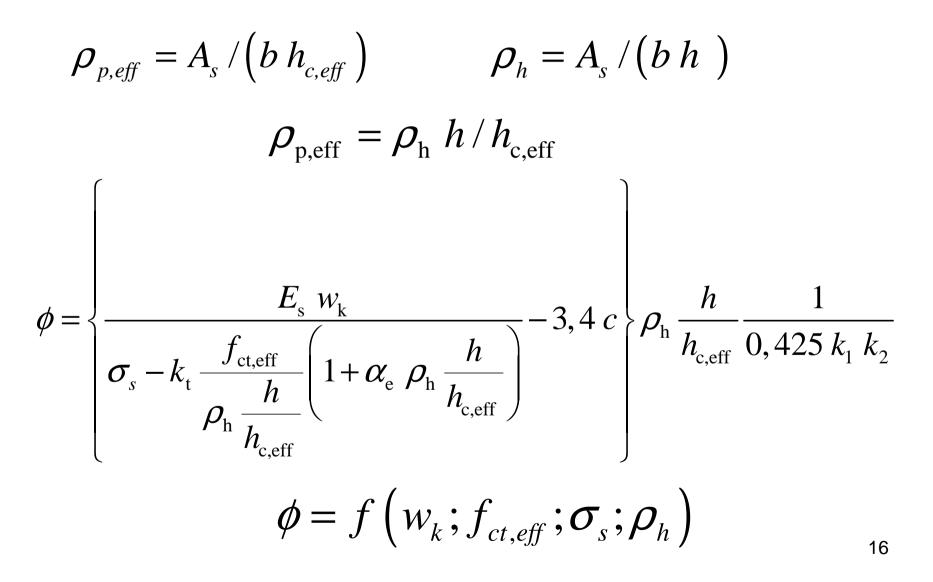
$$w_{\rm k} = s_{\rm r,max} \left(\mathcal{E}_{\rm sm} - \mathcal{E}_{\rm cm} \right)$$

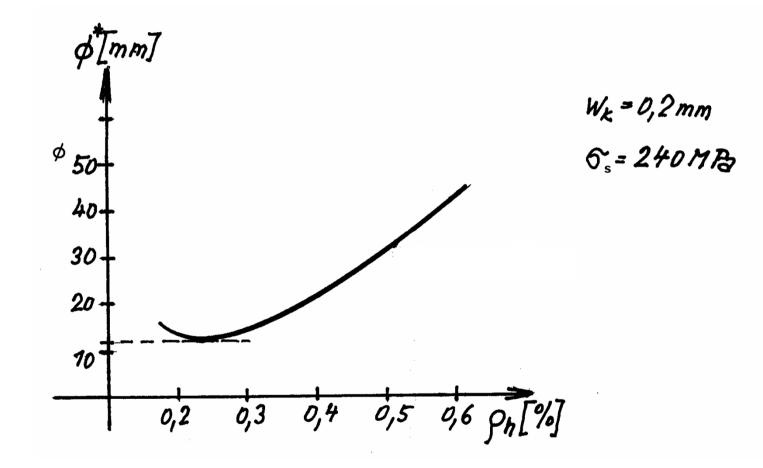
$$s_{r,\max} = k_3 c + k_1 k_2 k_4 \phi / \rho_{p,eff}$$
$$\varepsilon_{sm} - \varepsilon_{cm} = \left(\sigma_s - k_t \frac{f_{ct,eff}}{\rho_{p,eff}} \left(1 + \alpha_e \rho_{p,eff}\right)\right) \frac{1}{E_s} \ge 0, 6 \frac{\sigma_s}{E_s}$$

$$w_{\rm k} = (k_3 c + k_1 k_2 k_4 \phi / \rho_{p,eff})(\varepsilon_{sm} - \varepsilon_{cm})$$

$$w_{k} = f(c; \phi; \rho_{p,eff}; f_{ct,eff}; \sigma_{s}; \rho_{p,eff})$$

Calculation of the bar diameter ϕ



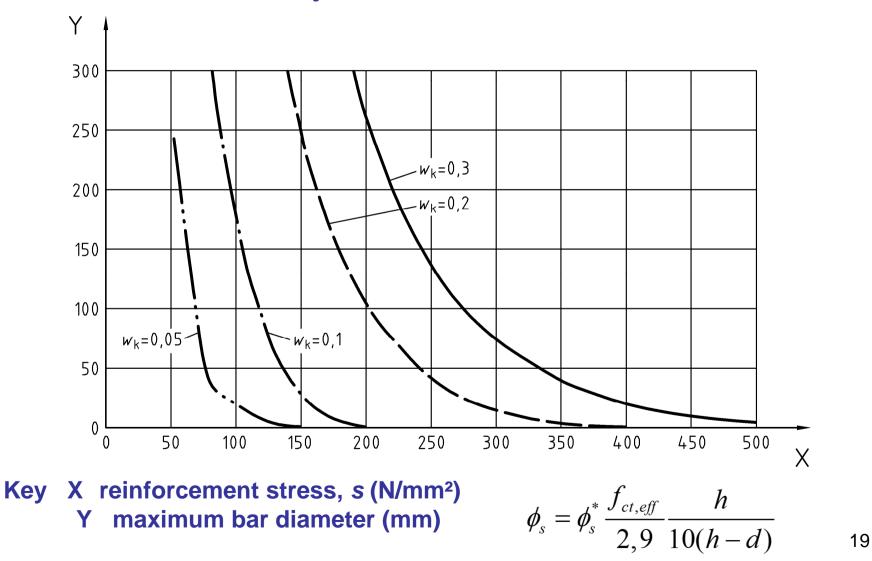


Steel stress ²	Ма	m]	
[MPa]	w _k = 0,4 mm	w _k = 0,3 mm	w _k = 0,2 mm
160	40	32	25
200	32	25	16
240	20	16	12
280	16	12	8
320	12	10	6
360	10	8	5
400	8	6	4
450	6	5	-

Notes: 1. The values in the table are based on the following assumptions: c = 25mm; $f_{ct,eff} = 2,9$ MPa; $h_{cr} = 0,5$; (h-d) = 0,1h; $k_1 = 0,8$; $k_2 = 0,5$; $k_t = 0,4$; k = 1,02. Under the relevant combinations of actions

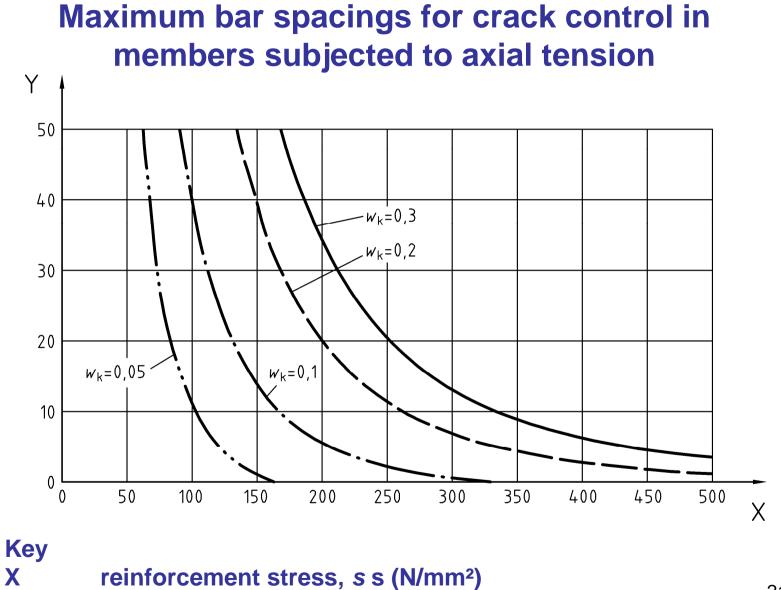
<u>Corrections</u>: $\phi_s = \frac{\mathbf{f}_{ct,eff}}{2,9} \frac{\mathbf{h}_{cr}}{8(\mathbf{h}-\mathbf{d})} \phi_s^*$ tension; $\phi_s \frac{\mathbf{f}_{ct,eff}}{2,9} \frac{\mathbf{k}_c \mathbf{h}_{cr}}{2(\mathbf{h}-\mathbf{d})} \phi_s^*$ bending 18

EN 1992-3: Maximum bar diameters for crack control in members subjected to axial tension



$$\rho_h = \pi \, \phi^2 \, / \, (4 \, s \, h) \qquad s = \pi \, \phi^2 \, / \, (4 \, \rho_h \, h)$$

Steel stress	Maximum bar spacing s [mm]			
$\sigma_{\rm s}$ [MPa]	$w_{\rm k} = 0,4 { m mm}$	$w_{\rm k} = 0,3 {\rm mm}$	$w_{\rm k} = 0,2 {\rm mm}$	
160	300	300	200	
200	300	250	150	
240	250	200	100	
280	200	150	50	
320	150	100	-	
360	100	50	-	



Y maximum bar spacing (mm)

21

• The area of reinforcement by imposed deformation $(1 + \alpha_e \rho_{p,eff}) = 1$

$$A_{s} = \frac{-K_{b} + \sqrt{K_{b}^{2} - 4.K_{a}.K_{c}}}{2K_{a}}$$

kde

Fs

$$K_{a} = E_{s} W_{k} \qquad K_{b} = -3.4c \left(F_{s} - 0.4F_{cr} \right)$$
$$K_{c} = -0.425 k_{1} k_{2} \phi A_{c,eff} \left(F_{s} - 0.4F_{cr} \right)$$

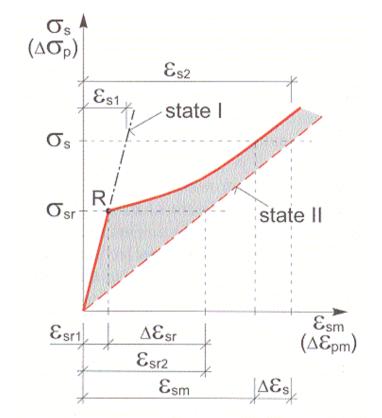
 $F_{\rm cr} = A_{\rm c,eff} f_{\rm ct,eff}$ the force in effective area

- the tension force transmitted by reinforcement,
- $f_{ct,eff}$ the effective tensile strength of concrete at the time when we can expect the rise in concrete; by the escape of hydratation heat we can assume
 - $f_{\rm ct,eff} = 0,5 f_{\rm ctm},$
- $E_{\rm s}$ = 200 000 Mpa modulus of elasticity of steel,
- w_k characteristic width of crack.

$$K_{a} = E_{s} w_{k} - 3,4k_{t} c f_{ct,eff} \alpha_{e} \quad K_{b} = -3,4c \left(F_{s} - 0,4F_{cr}\right) - 0,425k_{1} k_{2} k_{t} \phi F_{cr} \alpha_{e}$$

 $\rho_{p,eff} = (A_{s} + \xi_{1}^{2}A_{p})/A_{c,eff}$ $\xi_{1} = \sqrt{(\xi \emptyset_{s} / \emptyset_{p})}; \text{ prestressing steel only } \xi_{1} = \sqrt{\xi}$ $\emptyset_{s} \text{ largest bar diameter of reinforcing steel}$ $\emptyset_{p} \text{ equivalent diameter of tendon,}$ $\emptyset_{p} = 1,6 \sqrt{A_{p}} \text{ for bundles, } A_{p} \text{ area of tendon}$ $\emptyset_{p} = 1,75 \emptyset_{wire} \text{ 7 wire strand, } \emptyset_{wire} \text{ wire } \emptyset$

c) Deflection control



Simplified stress-strain relationship of embedded reinforcement

Members which are expected to crack a <u>deformation</u> parameter may be calculated

 $\alpha = \zeta \alpha_{||} + (1 - \zeta) \alpha_{||}$

- α is the deformation parameter (strain, a curvature, a rotation, or may be a deflection)
- $\alpha_{\rm |}, \alpha_{\rm ||}$ are the values of the parameter calculated for the uncracked and fully cracked conditions respectively
 - a distribution coefficient (allowing for tensioning stiffening at a section)

$$\zeta = 1 - \beta \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2$$

ζ

 ζ = 0 for uncracked section

- β is a coefficient taking account of the influence of the duration of the loading or of repeated loading on the average strain
 - = 1,0 for a single short-term loading
 - = 0,5 for sustained loads or many cycles of repeated loading
- $\sigma_{\rm s}$ the stress in the tension reinforcement calculated on the basis of a cracked section
- σ_{sr} the stress in the tension reinforcement calculated on the basis of a cracked section under the loading conditions causing first cracking

<u>Note</u>: $\sigma_{\rm s}/\sigma_{\rm sr}$ may be replaced by $M_{\rm cr}/M$ for flexure or $N_{\rm cr}/N$ for pure tension, where $M_{\rm cr}$ is the cracking moment and $N_{\rm cr}$ is the cracking force.

For loads with a duration causing creep, the total deformation including creep may be calculated by using an effective modulus of elasticity for concrete

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)}$$

 $\varphi(\infty, t_0)$ is the creep coefficient relevant for the load and time interval

Shrinkage curvatures may be assessed using expression

$$\frac{1}{r_{e}} = \varepsilon_{cs} \alpha_{e} \frac{S}{I}$$

 $1/r_{cs}$ is the curvature due to shrinkage

- \mathcal{E}_{cs} the free shrinkage strain
- S the first moment of area of the reinforcement about the centroid of the section
- *I* the second moment of area of the section
- $\alpha_{\rm e}$ the effective modular ratio