Prestressed Concrete

Part 3 (Design of prestressing)

Prof. Ing. Jaroslav Procházka, CSc. Department of Concrete and Masonry Structures

Design of prestressed members

- <u>Limit states:</u> ULS ultimate associated with collapse, or with forms of structural failure
 - SLS serviceability- beyond which specified service requirements are not met
- Reinforced concrete structure:

ULS – design of size and reinforcement SLS – check of serviceability fulfilment of detailing and particular rules

• Prestressed concrete structure:

SLS – design of size and prestressing force ULS – check of carrying capacity fulfilment of detailing and particular rules

Serviceability limit states (SLS)

Three combinations designated by the representative value of the dominant action are:

<u>Characteristic (Rare) combination</u>

$$\sum_{j\geq 1} G_{k,j} "+" P "+" Q_{k,1} "+" \sum_{i>1} \psi_{0,i} Q_{k,i}$$

Frequent combination

$$\sum_{i\geq 1} G_{k,j} "+" P "+" \psi_{1,1} Q_{k,1} "+" \sum_{i\geq 1} \psi_{2,i} Q_{k,i}$$

Quasi-permanent combination

$$\sum_{k,j} G_{k,j} "+" P "+" \sum_{i>1} \psi_{2,i} Q_{k,i}$$

P

- G_k , $Q_k = \frac{\int_{-\infty}^{\infty} characteristic value of permanent, variable load;$
- *Q*_{k1} dominant value of variable load;
 - mean value of prestressing force

SLS – (EN 1992-1-1)

- a) Limitation of stresses
- Concrete:
 - compressive stress under characteristic combination of loads (longitudinal cracks) $\sigma_{\rm c} \leq 0.6 f_{\rm ck}$ if $0,45f_{ck} \le \sigma_c \le 0,6f_{ck}$ – non-linear creep $\sigma_{\rm c} \leq 0.7 f_{\rm ck}$
 - pretensioned members by transfer
- Reinforcement:
 - tensile stresses under characteristic combination of loads including imposed deformation
- Prestressed tendons:
 - tensile stresses under characteristic combination of loads

 $\sigma_{\rm s} \leq 0.8 f_{\rm vk}$ $\sigma_{\rm s} \leq 1,0 f_{\rm vk}$

 $\sigma_{\rm p} \leq 1,0 f_{\rm pk}$

4

b) Crack control – limited and partial prestress

- Without cracks
- Crack width

 $\sigma_{\rm c} \leq f_{\rm ctm}$ $W \leq W_{\rm max}$

Recommended value *w*_{max} [mm] for prestressed members with bonded tendons

Exposure class	Frequent load combination
X0, XC1	0,2
XC2, XC3, XC4	0,2 ¹⁾
XD1, XD2, XS1 XS2, XS3, XS4	Decompression ²⁾

¹⁾ In addition, decompression should be check under quasi-permanent load combination

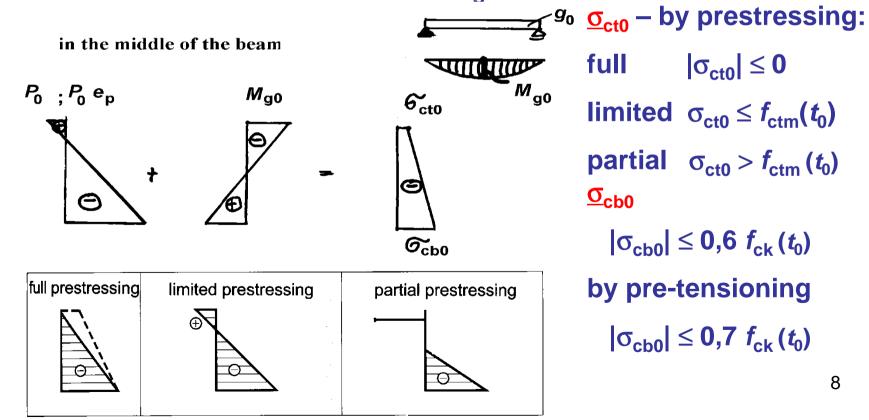
²⁾ Prestressed tendon should be in compressed area

b) **Deflection control**

- Deflection under quasi-permanent load combination $y_{max} \le 1/250$
- Deflection that could demage adjacent parts of the structure (brittle partition walls etc.) deflection after construction y_{max} ≤ 1/ 500 where / is the span

Investigation stages of prestress element

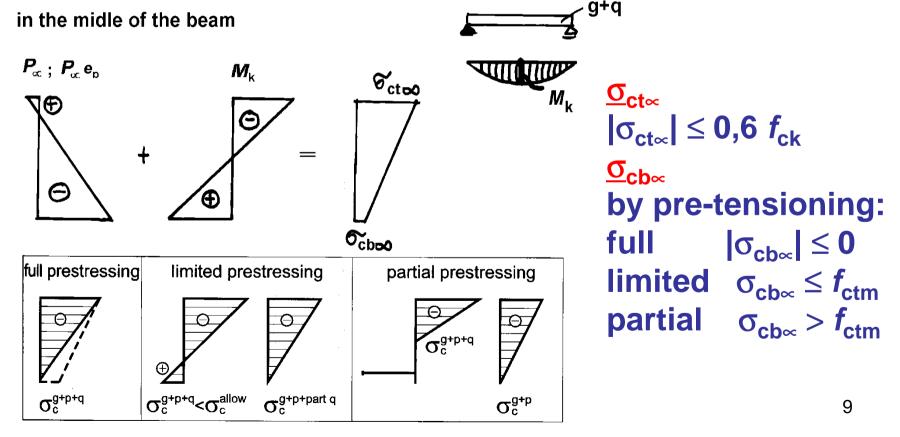
- Stage of prestress
- after transfer of prestressing act: prestressing force P_{m0} and usually only selfweight – class of concrete by prestressing
- Servis stage


after all losses of prestressing force – act: prestressing force $P_{m \approx}$ and service load in prescribed combination – class of concrete in service

Investigation stages of prestress element

Stage of prestressing

after transfer of prestressing – introduction the prestressing force into concrete – act:

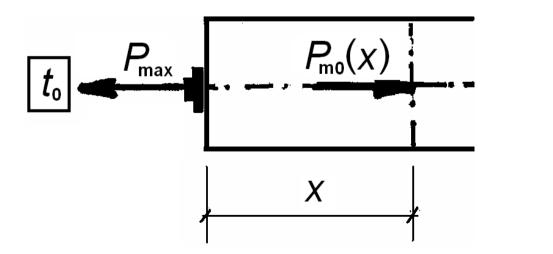

a) the prestressing force P_{m0} at time t_0 with eccentricity e_p b) usually only self-weight $g_0 - M_{q0}$

<u>Stage of service</u>

after all losses of prestressing force – act:

- a) the prestressing force $P_{m\infty}$ at time $t = \infty$ with the eccentricity e_{p} ; $t = \infty \cong 500\ 000$ hours $\cong 57$ years
- b) service load in prescribed combination g + q

Prestressing force

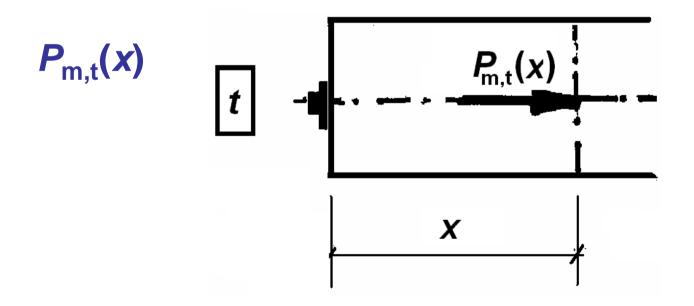

• <u>The initial prestress force</u> $P_{m0}(x)$ <u>at time $t = t_0$ </u> immediately after transfer

 $\begin{array}{lll} P_{m0}(x) = & P_{max} - \sum \Delta P_i(x) \leq A_p \cdot \sigma_{pm0}(x) \\ \mbox{where} & & P_{max} \leq A_p \cdot \sigma_{pmax} \mbox{ is the force at the active end during} \\ & \mbox{tensioning} \end{array}$

 $\sigma_{pm,\max} \leq \min(0,8f_{pk};0,9f_{p0,1k})$

 $\Delta P_i(x)$ are the short-term losses

 $\sigma_{pm0,\max} \leq \min(0,75f_{pk};0,85f_{p0,1k})$



10

• Mean value of prestressing force at time t

 $P_{m,t}(x) = P_{m0}(x) - A_p \Sigma |\sigma_{pi}(x)|$ where

 $P_{m0}(x)$ is the initial prestress force at time t_0 of prestress A_p the sectional area of tendon $\Sigma |\sigma_{pi}(x)|$ the sum of long-term losses of prestress

Effect of prestressing at SLS

Allowance shall be made for <u>possible variations in</u> prestress

Two characteristic values of prestressing force are estimated:

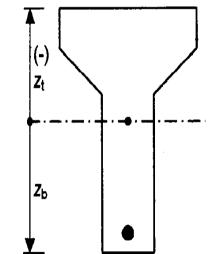
- upper characteristic value $P_{k,sub} = r_{sub} P_{m,t}(x)$
- lower characteristic value $P_{k,inf} = r_{inf} P_{m,t}(x)$ for pre-tensioning or unbonded tendon:

*r*_{sub}=1,05, *r*_{inf}=0,95

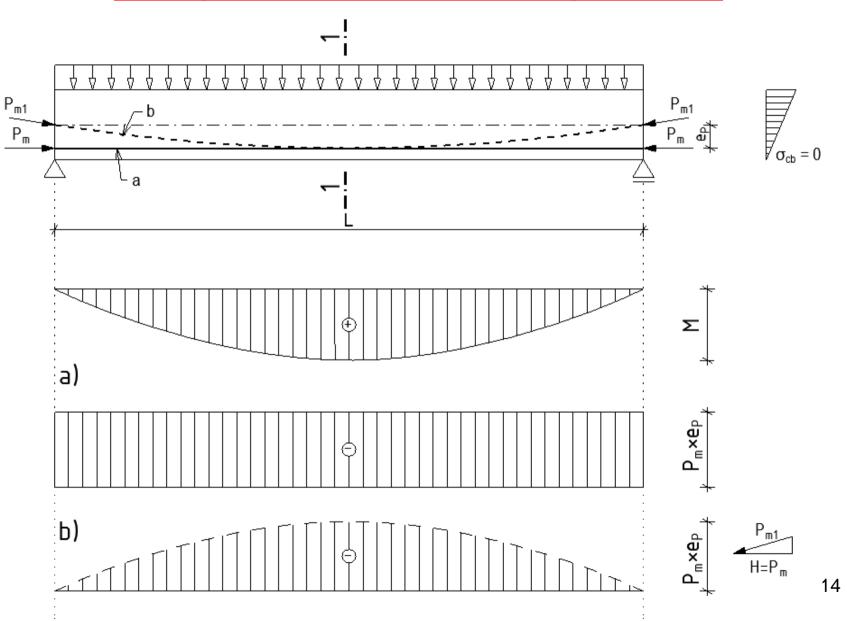
for post-tensioning with bonded tendon:

*r*_{sub}=1,10, *r*_{inf}=0,90

Design of prestress

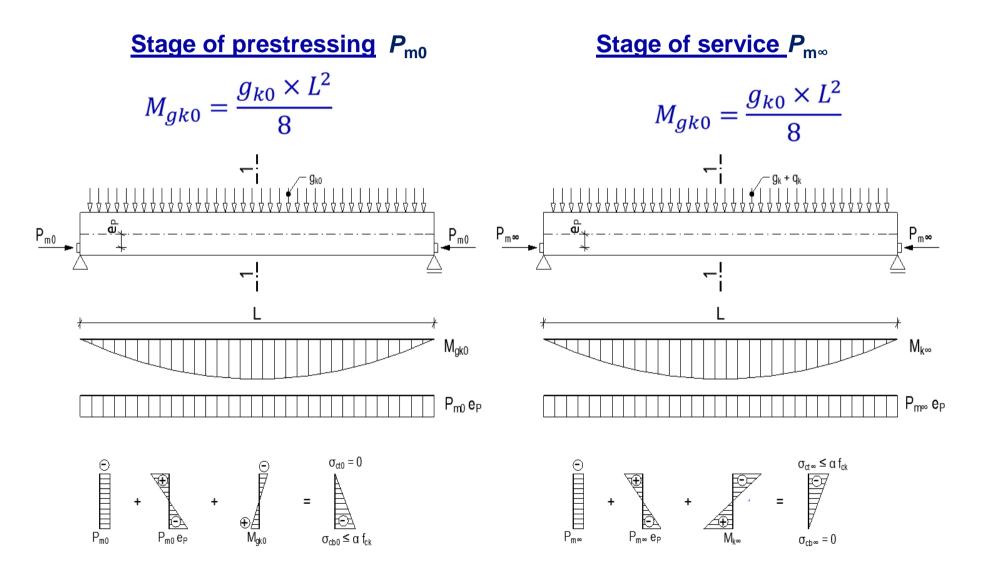

Prestressing force

Most effective - the prestressing force with the eccentricity SLS - the stress in the cross section in concrete fibres of statically determinate structures


$$\sigma_c = \frac{-P}{A} + \frac{-Pe + M}{I} z$$

P - the force in tendon (compression +)

- e the eccentricity of the tendon (as z)
- A the area of cross-section
- the moment of the inertia
- **M** the bending moment at SLS in the cross section
- *z* the distance of the concrete fibre from the centre of gravity, + in direction to the bottom of cross section



Design of the prestressing force *P*

Design of the prestressing force *P* and eccentricity *e*_p

Simplified design, full prestressing – section 1-1

Design of prestressing force P and eccentricity ep

Conditions for stress in concrete:

Stage of prestressing P_{m0}

$$(B) \sigma_{ct0} = \frac{P_{m0}}{W_t} (r_t + e_p) + \frac{M_{gk0}}{W_t} = 0$$
$$\sigma_{cb0} = \left| \frac{P_{m0}}{W_b} (r_b + e_p) + \frac{M_{gk0}}{W_b} \right| \le \alpha_P f_{ck,P}$$

$$\sigma_{ct\infty} = \left| \frac{P_{m\infty}}{W_t} (r_t + e_p) + \frac{M_{k\infty}}{W_t} \right| \le \alpha_S f_{ck}$$

(A) $\sigma_{cb\infty} = \frac{P_{m\infty} (r_b + e_p)}{W_b} + \frac{M_{k\infty}}{W_b} = 0$

from (A):

$$P_{m\infty} = -\frac{M_{k\infty}}{r_b + e_P}; \quad P_{m\infty} \cong 0.8 P_{m0}$$
$$r_b + e_p = -\frac{M_{k\infty}}{0.8 P_{m0}} \quad (1)$$

from (B):

$$r_t + e_p = -\frac{M_{gk0}}{P_{m0}}$$
 (2)

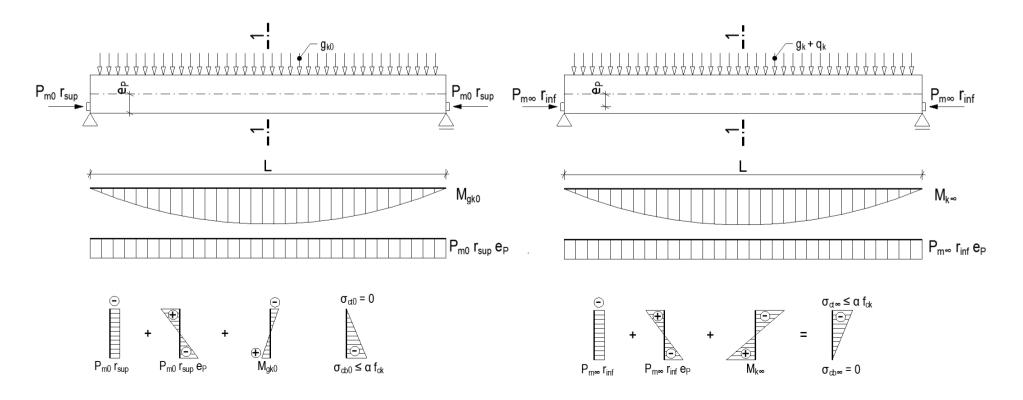
Design of prestressing force P and eccentricity e_p

from (A):

$$r_{b} + e_{p} = -\frac{M_{k\infty}}{0.8 P_{m0}} \quad (1) \qquad r_{t} + e_{p} = -\frac{M_{gk0}}{P_{m0}} \quad (2)$$

$$\frac{r_{t} + e_{p}}{r_{b} + e_{p}} = \frac{\frac{M_{gk0}}{P_{m0}}}{\frac{M_{k\infty}}{0.8 P_{m0}}} = 0.8 \frac{M_{gk0}}{M_{k\infty}} \qquad K = 0.8 \frac{M_{gk0}}{M_{k\infty}} \quad (3)$$

$$e_{p} = \frac{-r_{t} + K r_{b}}{1 - K}$$
from (1):


$$r_{b} + e_{p} = -\frac{M_{k\infty}}{0.8 P_{m0}} \rightarrow P_{m0} = -\frac{M_{k\infty}}{0.8 (r_{b} + e_{p})} \qquad P_{m0} = 0.95 P_{max}$$

$$A_{p} \approx \frac{P_{m0}}{0.95\sigma_{p,max}} \qquad P_{m0} - force by prestressing$$

Design of the prestressing force P and eccentricity ep

Simplified design, full prestressing – section 1-1- with consideration to $r_i (r_{sup}, r_{inf})$ – creficient representing the accurancy of prestressing

Stage of prestressing $P_{k,sup} = r_{sup} \times P_{m0}$ $M_{gk0} = \frac{g_{k0} \times L^2}{2}$ $\frac{\text{Stage of service}}{P_{k,inf} = r_{inf} \times P_{m^{\infty}}}$ $M_{gk} = \frac{(g_k + q_k) \times L^2}{8}$

Design of prestressing force P and eccentricity ep

Conditions for stress in concrete:

Stage of prestressing

$$\boldsymbol{P}_{k,sup} = \boldsymbol{r}_{sup} \times \boldsymbol{P}_{m0}$$

 $\frac{\text{Stage of service}}{P_{k,inf} = r_{inf} \times P_{m^{\infty}}}$

$$(B) \sigma_{ct0} = \frac{P_{m0}}{W_t} (r_t + e_p) + \frac{M_{gk0}}{W_t} = 0 \qquad \left| \sigma_{ct\infty} = \left| \frac{P_{m\infty} \times r_{inf}}{W_t} (r_t + e_p) + \frac{M_{k\infty}}{W_t} \right| \le \alpha_S f_{ck} \right|$$

$$\sigma_{ct0} = \left| \frac{P_{m0} \times r_{sup}}{W_b} (r_b + e_p) + \frac{M_{gk0}}{W_b} \right| \qquad (A) \sigma_{cb\infty} = \frac{P_{m\infty} \times r_{inf}}{W_b} (r_b + e_p) + \frac{M_{k\infty}}{W_b} = 0$$

$$\le \alpha_P f_{ck,P}$$

from (A):

$$P_{m\infty} \times r_{inf} = -\frac{M_{k\infty}}{r_b + e_P}; \quad P_{m\infty} \cong 0.8 P_{m0}$$
$$r_b + e_p = -\frac{M_{k\infty}}{0.8 P_{m0} \times r_{inf}} \quad (1)$$

. .

from (B):

$$r_t + e_p = -\frac{M_{gk0}}{P_{m0} \times r_{sup}} \quad (2)$$

. .

Design of prestressing force P and eccentricity e_p

from (A):

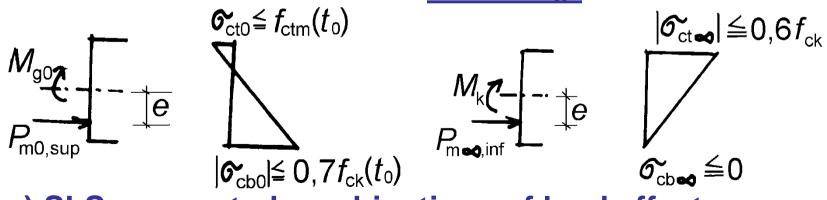
$$r_{b} + e_{p} = -\frac{M_{k\infty}}{0.8 P_{m0} \times r_{inf}} \quad (1) \qquad r_{t} + e_{p} = -\frac{M_{gk0}}{P_{m0} \times r_{sup}} \quad (2)$$

$$\frac{r_{t} + e_{p}}{r_{b} + e_{p}} = \frac{\frac{M_{gk0}}{P_{m0} \times r_{sup}}}{0.8 P_{m0} \times r_{inf}} = 0.8 \frac{M_{gk0} \times r_{inf}}{M_{k\infty} \times r_{sup}} \qquad K = 0.8 \frac{M_{gk0} \times r_{inf}}{M_{k\infty} \times r_{sup}} \quad (3)$$

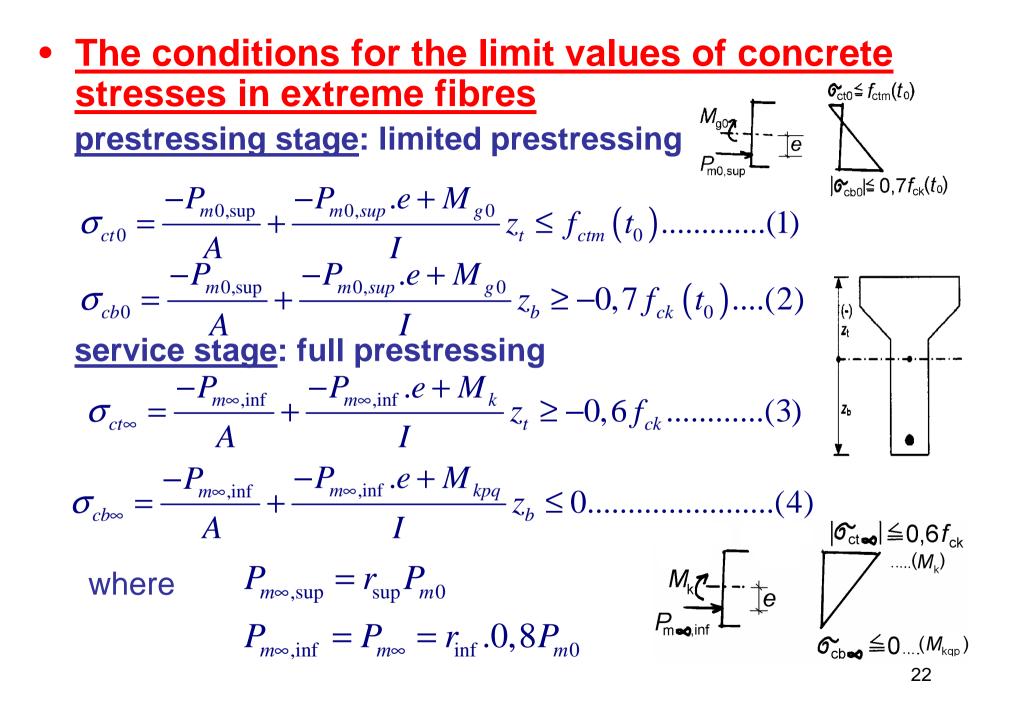
$$e_{p} = \frac{-r_{t} + K r_{b}}{1 - K}$$
from (1):

$$r_{b} + e_{p} = -\frac{M_{k\infty}}{0.8 P_{m0} \times r_{inf}} \rightarrow P_{m0} = -\frac{M_{k\infty}}{0.8 (r_{b} + e_{p}) \times r_{inf}} \qquad P_{m0} = 0.95 P_{max}$$

$$A_{p} \approx \frac{P_{m0}}{0.95 \sigma_{p,max}} \qquad P_{m0} - force by prestressing$$


Design of the prestressing force P and the eccentricity e

We assume:


a)
$$P_{\rm mx} = 0.8 P_{\rm m0}$$
 (20 % losses)

- b) SLS: limit values of concrete stresses
 eg. for pre-tensioned member cross section M_{max}
 <u>prestressing stage</u>: limited prestressing;
 <u>service stage</u>: full prestressing
 - top concrete fibres $\sigma_{ct0} \leq f_{ctm}(t_0); |\sigma_{ct\infty}| \leq 0.6 f_{ck}$

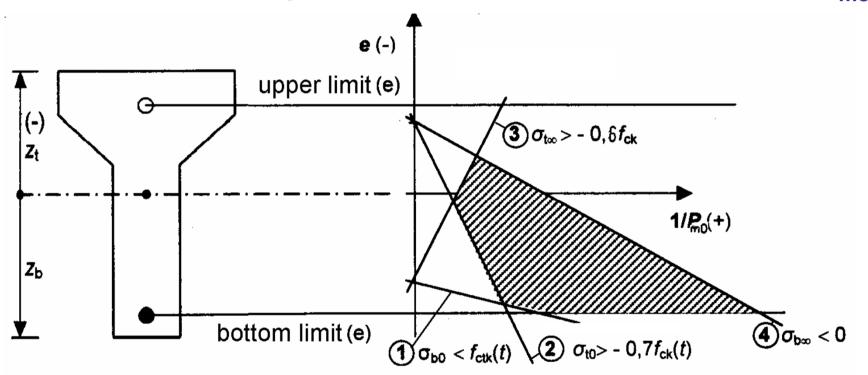
- bottom concrete fibre $|\sigma_{cb0}| \le 0.7 f_{ck}(t_0); \sigma_{cb\infty} \le 0$ <u>Prestressing stage</u> Service stage

c) SLS: requested combinations of load effects

From the unevenness (1) we receive

 $\frac{r_{\sup}}{A} + \frac{r_{\sup}ez_t}{I} \ge (-f_{ctm}(t_0) + \frac{M_{g0}z_t}{I})\frac{1}{P_{mo}}$ Points where the lines cut the coordinate *e* we receive assuming that $(1/P_{m0}) = 0$.

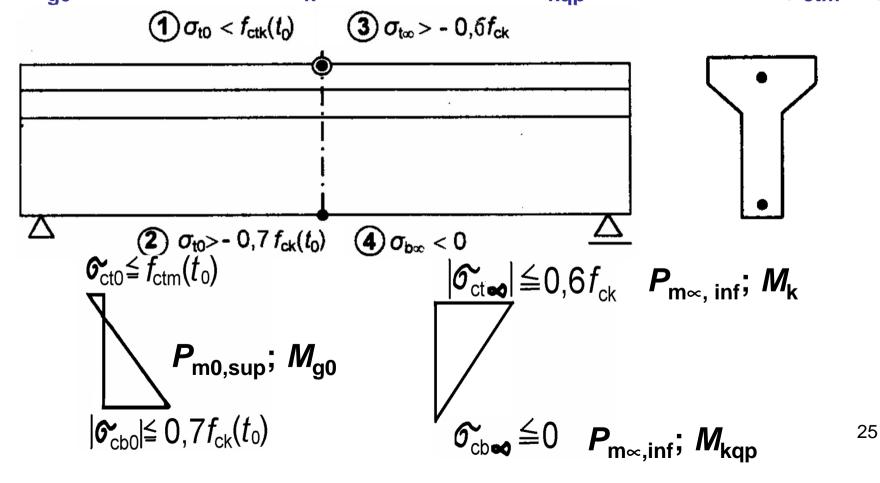
$$e_1 = -\frac{I}{Az_t}; e_2 = -\frac{I}{Az_b}; e_3 = -\frac{I}{Az_t}; e_4 = -\frac{I}{Az_b}; e_1 = e_3; e_2 = e_4$$


Assuming that e = 0 we receive the points where lines cut the coordinate $(1/P_{m0})$.

$$\frac{1}{P_{m01}} = \frac{r_{sup}}{A} \left(\frac{1}{-f_{ctm}(t_0) + \frac{M_{g0}z_t}{I}} \right); \frac{1}{P_{m02}} = \frac{r_{sup}}{A} \left(\frac{1}{0,7f_{ck}(t_0) + \frac{M_{g0}z_b}{I}} \right)$$
$$\frac{1}{P_{m03}} = \frac{0.8r_{inf}}{A} \left(\frac{1}{0,6f_{ck} + \frac{M_kz_t}{I}} \right); \frac{1}{P_{m04}} = \frac{0.8r_{inf}}{A} \left(\frac{1}{\frac{M_kz_b}{I}} \right)$$

23

From the unevenness (1) to (4) we can receive the set of permissible solutions for the prestressing force and its eccentricity.


Each unevenness presents linear relation for e and $1/P_{mo}$.

The diagram (1/ P_{m0} , *e*) with four lines determinative the set of points satisfactory the limit stresses in extreme concrete fibres.

• Example

Pre-tensioned precast panel with TT cross section C40/50; *A*=0,325 m²; *I*= 0,0173 m⁴; z_t =-0,229 m; z_b =0,511 m prestressing: C35/45; 0,7 $f_{ck}(t_0) \cong$ 25 Mpa, $f_{ctm}(t_0) \cong$ 3,1 Mpa M_{a0} =0,329 MNm; M_k =0,565 MNm; M_{kap} =0,413 MNm (f_{ctm} =0)

• Points where the lines cut the coordinate e we receive assuming that $(1/P_{m0}) = 0$

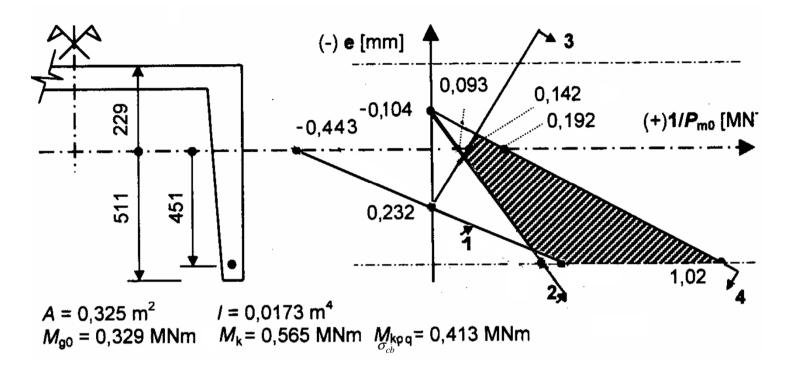
$$e_{1} \leq -\frac{I}{Az_{t}} = -\frac{0,0173}{0,325.(-0,229)} = 0,232$$

$$e_{2} \leq -\frac{I}{Az_{b}} = -\frac{0,0173}{0,325.0,511} = -0,104$$

$$e_{3} \geq -\frac{I}{Az_{t}} = -\frac{0,0173}{0,325.(-0,229)} = 0,232$$

$$e_{4} \geq -\frac{I}{Az_{b}} = -\frac{0,0173}{0,325.0,511} = -0,104$$

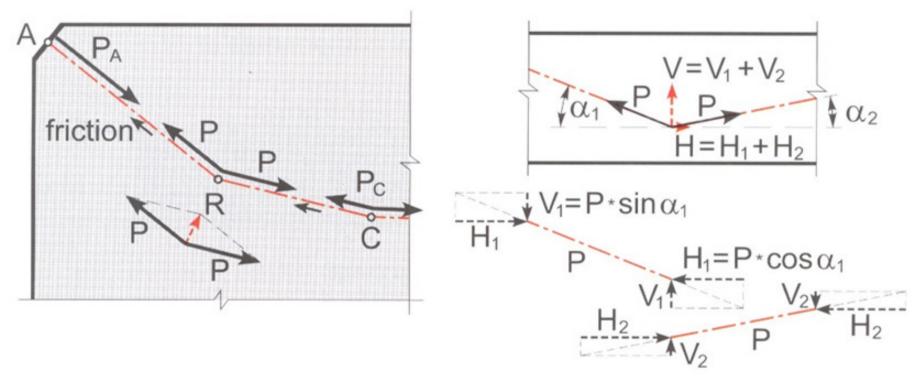
Assuming that e = 0 we receive the points where lines cut the coordinate $(1/P_{m0})$


$$\frac{1}{P_{m01}} = \frac{r_{sup}}{A} \left(\frac{1}{-f_{cm}(t_0) + \frac{M_{g0}z_r}{I}} \right) = \frac{1.05}{0.325} \left(\frac{1}{-3.1 + \frac{0.329.(-0.229)}{0.0173}} \right) = -0.433MN$$

$$\frac{1}{P_{m02}} = \frac{r_{sup}}{A} \left(\frac{1}{0.7f_{ck}(t_0) + \frac{M_{g0}z_b}{I}} \right) = \frac{1.05}{0.325} \left(\frac{1}{25 + \frac{0.329.0.511}{0.0173}} \right) = 0.093MN$$

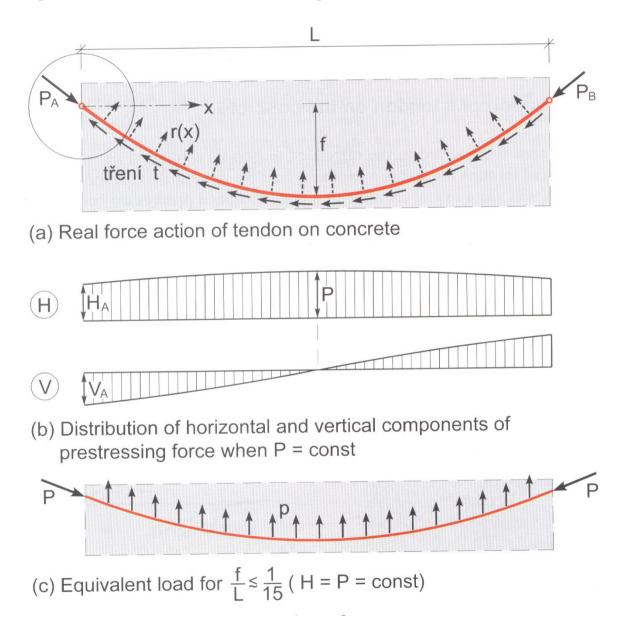
$$\frac{1}{P_{m03}} = \frac{0.8r_{inf}}{A} \left(\frac{1}{0.6f_{ck} + \frac{M_{k}z_r}{I}} \right) = \frac{0.8.0.95}{0.325} \left(\frac{1}{24 + \frac{0.565.(-0.229)}{0.0173}} \right) = 0.142MN$$

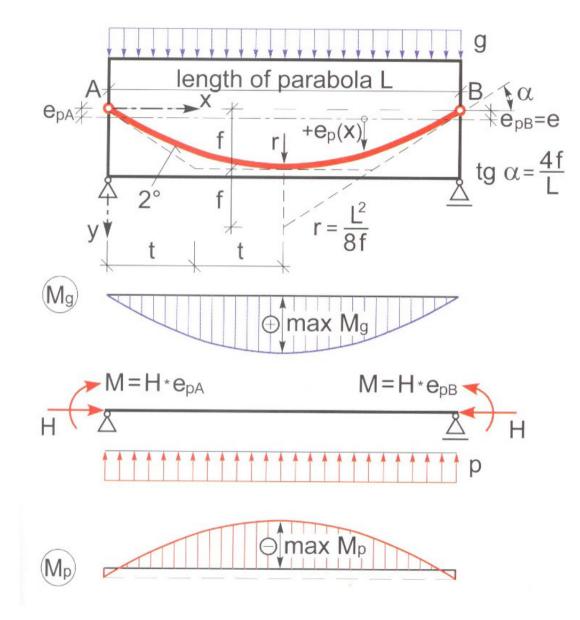
$$\frac{1}{P_{m04}} = \frac{0.8r_{inf}}{A} \left(\frac{1}{\frac{M_{kqp}z_b}{I}} \right) = \frac{0.8.0.95}{0.325} \left(\frac{1}{\frac{0.413.0.511}{0.0173}} \right) = 0.192MN$$

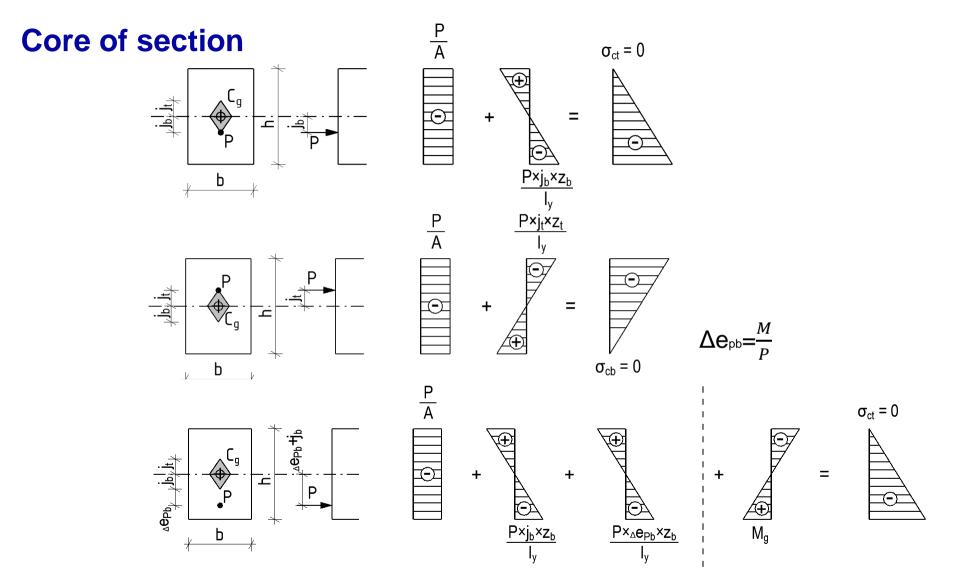

27

Check of bottom $\sigma_{cb\infty} = \frac{-P_{m\infty,inf}}{A} + \frac{-P_{m\infty,inf} \cdot e + M_{kpq}}{I} z_b = \frac{-1,142.0,8.0,95}{0,325} + \frac{-1,142.0,9}{0,325} + \frac{-1,142.0,9}{0,325} + \frac{-1,142.0,9}{0,325} + \frac{-1,142.0,9}{0$

$$+\frac{-1,142.0,8.0,95.0,451+0,413}{0,173}0,511 = -2 \le 0$$
 28

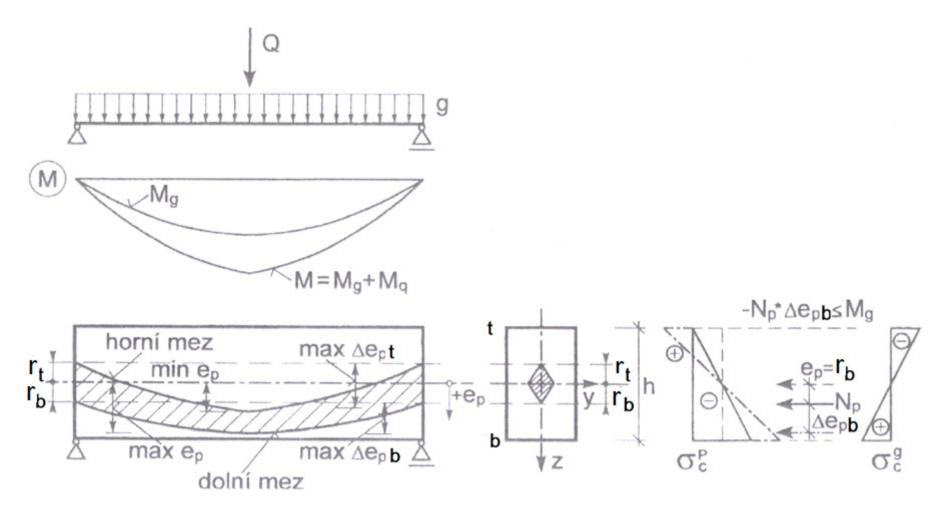

Force action of curved tendon on the concrete


Source of radial forces

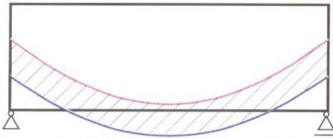

Forces caused by prestressing acting on concrete

Equivalent load for a parabolic tendon

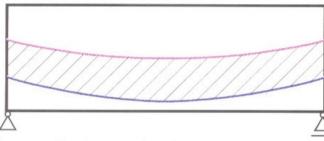
Beam with parabolic tendon



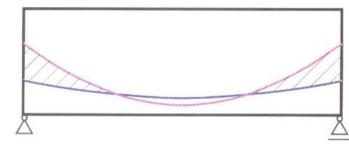
Part of the bending moment(for instance M_g , ev. $M_g + \alpha M_q$) can be eliminated by the curved tendon (equivalent load). Centre of the gravity of tendon is necessary placed in the cross section to avoid the tensioned stresses.


Location of limiting zone for centre of gravity of tendon

Design of approximate value of N_p by equivalent load

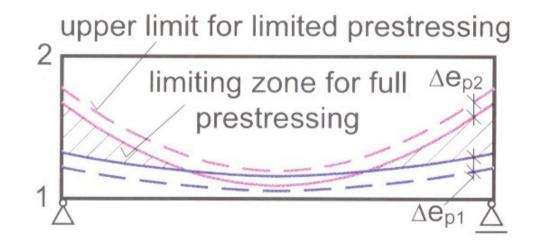


33


Undesirable locations of limiting zone for tendon centroid

(a) Upper limit too near bottom fibre

(b) Upper limit too far from bottom fibre


(c) Upper and lower limits cross

- a) increase the prestressing force absolute value), or
 - increase the height of beam

- b) reduce the prestressing force, or
 - reduce the height of beam

- c) in the middle part no limiting part for the location of the tendon;
 - increase the prestressing force, or
 - increase the height of beam

Limiting zone for tendon location for full and limited prestressing

