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1 Notation

CAF . . . continuous aligned fibers
SAF . . . short aligned fibers
SRF . . . short random fibers
COD . . . crack opening displacement [m]
CSD . . . crack slipping displacement [m]
a . . . length of the fiber debonded length [m]
ag . . . aggregate size [m]
c1, c2 . . . constants in Hordijk’s law [-]
b0–b3 . . . parameters of bond shear strength [-]
f . . . snubbing coefficient [-]
g . . . snubbing factor [-]
fc . . . matrix compressive strength [-]
ft . . . matrix tensile strength [-]
k . . . fiber cross-section shape correction factor [-]
sF . . . shear factor coefficient [-]
u, ui . . . crack shear slip (ditto for i-th crack) [m]
û . . . crack shear slip adjusted by Ncr [m]
w, wi . . . crack opening (ditto for i-th crack) [m]
wmax . . . maximum crack opening [m]
wf . . . characteristic crack opening (for lin. model failure) [m]
∆w . . . activation opening [m]
w̄ . . . stress-dependent crack opening = w −∆w
w∗ . . . transitional crack opening [m]
ŵ . . . crack opening adjusted by Ncr [m]
x . . . distance from the crack [m]
D . . . stiffness matrix
De . . . elastic stiffness matrix
Dcr,T . . . local tangent stiffness matrix of crack
Dcr,S . . . local secant stiffness matrix of crack
Df . . . fiber diameter [m]
DI,T . . . tangent stiffness in mode I (opening) [Pa]
DI,S . . . secant stiffness in mode I (opening) [Pa]
DII . . . stiffness in mode II (shearing) [Pa]
D∗,f . . . crack stiffness due to fibers only [Pa]
D∗,m . . . crack stiffness due to matrix only [Pa]
D∗,ω . . . damage-influenced crack stiffness [Pa]
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D̂∗ . . . crack stiffness effected by the number of parallel cracks [Pa]
Em . . . Young’s modulus of matrix [Pa]
Ef . . . Young’s modulus of fibers [Pa]
Fa . . . fiber anchoring force [N]
F0 . . . resultant of shear stress on fiber surface [N]
Gm . . . shear modulus of matrix [Pa]
Gf . . . shear modulus of fibers [Pa]
Gf . . . fracture energy [N/m]
Gc . . . shear stiffness of a cracked composite [Pa]
H . . . linear hardening modulus [Pa]
L . . . element size (projection) [m]
L̂ . . . element size adjusted by Ncr [m]
Lf . . . fiber length [m]
M . . . exponent in the softening law [-]
Ncr . . . number of parallel cracks in element [-]
Vm . . . matrix volume ratio [-]
Vf . . . fiber volume ratio [-]
V̄f . . . effective fiber volume ratio [-]
V ast
f . . . damage-affected fiber volume ratio [-]
β . . . shear retention factor [-]
βf . . . shear retention factor due to fibers only [-]
βm . . . shear retention factor due to matrix only [-]
γ . . . shear strain [-]
γel . . . shear elastic strain [-]
γcr . . . shear cracking strain [-]
γf . . . crack shear deformation [-]
γfc . . . damage parameter (crack shear deformation) [-]
ε . . . normal strain [-]
εel . . . normal elastic strain [-]
εcr . . . normal cracking strain [-]
εm . . . elastic strain if matrix [-]
εf . . . elastic strain of fibers [-]
∆ . . . fiber pull-out displacement [-]
η . . . auxiliary constant depending on Ef , Em and Vf [-]
λ . . . auxiliary constant for SRF [-]
σ . . . normal stress [Pa]
σb . . . (total) bridging stress [Pa]
σb,f . . . bridging stress in fibers (nominal, per unit area of crack) [Pa]
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σf . . . nominal stress in fibers (per unit area) [Pa]
σ̄f . . . effective stress in fibers (per area of fibers) [Pa]
σb,m . . . bridging stress in matrix (nominal, per unit area of crack) [Pa]
σm . . . nominal stress in matrix (per unit area) [Pa]
σ̄b,m . . . bridging stress in matrix (effective, per area of matrix) [Pa]
σ̄m . . . effective stress in matrix (per area of matrix) [Pa]
τ . . . shear stress [Pa]
τ . . . frictional shear stress between fiber and matrix during fiber pullout [Pa]
τ0 . . . frictional shear stress between fiber and matrix during debonding [Pa]
τb . . . bridging shear stress in (per unit area) [Pa]
τb,f . . . bridging shear stress in fibers (nominal, per unit area of crack) [Pa]
τb,m . . . bridging shear stress in matrix (nominal, per unit area of crack) [Pa]
θ . . . angle between crack plane normal and fiber [-]
ω . . . scalar damage [-]
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2 Introduction and General Information

This manual summarizes the main methods and algorithms developed in order
to realistically simulate the short-time mechanical behavior of fiber-reinforced
cementitious composites with strain hardening. These methods have been im-
plemented in the open-source finite element package OOFEM [9], [10], [11]. This
manual provides also examples of material definition syntax used in OOFEM.

The main features and assets of the new implementation are (among others):

• cohesive crack model with fixed (not rotating) orientation of crack planes

• cohesive laws capturing the behavior of both plain and fiber reinforced
composites

• the most common as well as user-defined traction-separation laws of matrix

• traction-separation laws for fibers depending almost entirely on the physical
properties, quantity, alignment (orientation) and type

• evolving degradation of shear stiffness after cracking

• crack shearing leading to fiber damage

• crack-spacing concept (multiple parallel cracks) for large elements

• nonlocal model guaranteeing objective results for strain hardening materi-
als and fine finite element mesh

Interesting quantities computed by the program can be parsered and ex-
tracted by a python program python.py (available at OOFEM.org) and then
displayed using e.g. Gnuplot (free & open-source) [12] or your favorite spread-
sheet program. The results can be also exported into a set of *.vtu files and then
visualized in Paraview (free & open-source) [2]. The current version of the source
files can be obtained at the OOFEM git repository http://oofem.org/gitweb/ and
then compiled. The next release (version 2.5) containing the new material model
is expected in the mid-2017. The executable version of OOFEM for Windows
32-bit (which can be used not only to run the tests and benchmarks of the new
model) is availabe at the web page where you found this documentation.

The models presented hereafter are suitable for representation of individual
cracks in plain as well as fiber reinforced cementitious composites. It can be
used to simulate localized cracks in composites, which exhibit tension softening
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behavior, such as fiber reinforced concrete (FRC), high strength FRC (HSFRC)
or softening or mildly hardening type of ultra high-performance FRC (UHPFRC).
The model, however, is also applicable for tension hardening composites, which
exhibit multiple cracking behavior, such as engineered cementitious composites
(ECC) or strain hardening fiber reinforced cementitious composites (SHCC).

Post-cracking tensile and shear response is modeled using the concept of a
cohesive crack. In this approach, a crack is perceived as a displacement discon-
tinuity, which is capable of transferring traction between its faces. The normal
traction is related to the crack opening displacement through traction-separation
law. The resulting composite traction-separation relationship on crack is consid-
ered as the combination of matrix bridging and fiber bridging. The fiber bridging
model is based on micromechanics of fiber debonding and pullout. Crack sliding
is allowed by the reduction of the shear stiffness at the cracked material point.

The implementation exploits the object-oriented structure of OOFEM. The
parent abstract class Fixed crack model FCM provides only the general structure
for the stiffness matrices and the stress-return algorithm; this class is derived from
the Structural Material class. The constitutive laws for crack opening and
shearing of plain concrete are implemented in ConcreteFCM class. This model is a
parent of the Fixed crack model for FRC, FRCFCM, which introduces material laws
for different kinds of fibers and the overall stress/stiffness is evaluated according
to the volume fraction of matrix and fibers. Simulations of strain hardening
cementitious materials on a fine finite element mesh can give objective results
only when using Nonlocal fixed crack model for SHCC defined in NLFRCFCM class.

The theory behind the new model is based on [1], [7], [5], [6], [13], [4], [8],
[14], [3].
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3 Fixed crack model - overview

This section describes the implementation of the fixed crack model. Before the
onset of cracking, the material is modeled as isotropic linear elastic characterized
by Young’s modulus and Poisson’s ratio. Cracking is initiated when principal
stress reaches tensile strength. Further loading is governed by a softening law.
Proper amount energy dissipation is guaranteed by the crack-band approach, the
width of the crack band is given by the size of the finite element projected in
the direction of the principal stress. Multiple cracking is allowed, the maximum
number of cracks is controlled by ncracks parameter. Only mutually perpendic-
ular cracks are supported. If cracking occurs in more directions, the behavior on
the crack planes is considered to be independent. The secant stiffness is used for
unloading and reloading. In compression regime, this model corresponds to an
isotropic linear elastic material.

Once the the strength of the material has been reached, further loading is the
normal direction to the crack plane is governed by one of the traction-separation
or traction-crack strain laws. In the direction normal to the crack plane, the total
normal strain ε is subdivided into the elastic strain εel and cracking strain εcr.
In a similar fashion, the total shear strain γ is subdivided into the elastic γel and
cracking shear strain γcr. Correct split of the total deformation into the elastic
and cracking component is implemented in the GiveRealStresVector method,
the algorithm uses initially gradient method and subsequently bisection should
the gradient method fail.

3.1 Stiffness matrices and stresses

The elastic stiffness matrix De is constructed from the effective Young’s modulus
and Poisson’s ratio. The effective Young’s modulus of material without fibers is
equal to the conventional Young’s modulus.

The secant and tangent stiffness matrices in the local coordinate system
(given by the crack directions) are computed as

D = De −De (De +Dcr,S)−1De (1)

D = De −De (De +Dcr,T )−1De (2)

where Dcr,S/Dcr,T is the local tangent/secant stiffness matrix of the cohesive
crack(s) and is diagonal. First three components of Dcr,S are associated with
the normal crack directions and are computed as σi(ui,max, wi,max)/εcr,i while in
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the tangent stiffness matrix Dcr,T as ∂σi(ui, wi)/∂εcr,i. In both cases the shear
components (4th-6th) are the same, DII(ui, wi).

A global stiffness matrix is obtained by rotating the local stiffness matrix by
the transformation matrix for strain. The shear components in the local stiffness
matrix D are equal to Gc which is introduced in the next section.

Stresses in the local coordinate system are computed as

σ = Dcr,Sεcr (3)

3.2 Shear and shear stiffness of a cracked element

There are two stiffnesses associated with shear which need to be distinguished.
The first one is the effective shear stiffness of a cracked composite Gc which
is needed when constructing the stiffness matrix; the second one is the crack
stiffness in shearing mode, DII which is necessary in finding the equilibrium
at the material point level (split of total strain into cracking strain and elastic
strain).

Both stiffnesses can be used to calculate the shear stress. The first option is

τ = Gcγ (4)

where γ is the total strain. The second option is

τ = DII,Sγcr (5)

where γcr is the cracking part of the shear strain.
The calculated shear stress can be cropped by τmax which is the crack shear

strength and depends on the crack opening and crack shear slip.
Current implementation of the fixed crack model supports several different

ways to reflect the decrease in shear stiffness triggered by crack initiation. One
option is the shear retention factor, β which relates the stiffnesses of the cracked
and uncracked material

Gc = βG (6)

Another option is the shear factor coefficient sF which links the stiffness in
mode II to mode I

DII = sFDI,S (7)

Naturally, using the following equation, the crack shear stiffness can be con-
verted into the shear retention factor and vice versa

1

Gc

=
1

βG
=

1

G
+

1

DII

(8)
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β =
DII

DII +G
(9)

DII =
βG

1− β
(10)

3.3 Extension to multiple cracks

The formulae from the previous section can be easily generalized to case with
multiple perpendicular cracks. In terms of the shear strain the only difference is
that the cracking strain is now split into two components, γcr,1 (first crack) and
γcr,2 (second crack).

γ = γel + γcr = γel + γcr,1 + γcr,2 (11)

Naturally, any additional crack leads to an increase in shear compliance.
Total shear stiffness is given by the stiffness of three serially coupled units. The
reciprocal value of the effective shear modulus thus becomes

1

Gc

=
1

βG
=

1

G
+

1

DII,1(w1)
+

1

DII,2(w2)
(12)

where the first fraction on the right hand side of the equation is linked to the
elastic shear deformation γel and the subsequent two terms to γcr,1 and γcr,2.

The effective shear retention factor expressed in terms of the crack stiffnesses
in shear is evaluated as

β =
1

1 +G
(

1
DII,1

+ 1
DII,2

) (13)

The optional keyword multipleCrackShear defines how to calculate the ef-
fective shear stiffness Gc and crack shear stiffness DII . If this keyword is not
provided, the shear stiffness is determined from the dominant crack only, in the
other case it is computed using equations (12) and (18).

3.4 Crack opening and crack slip

Employing the crack-band approach, the crack opening (in the local coordinate
system) is obtained from the normal cracking strain

wi = Liεcr,i (14)
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where Li is the element size (projected normal to the i-th crack plane).
Crack sliding is computed in a similar fashion. Although, the problem can

become more complex because in general more than one crack can contribute to
the same shear cracking strain.

In the case of one crack the situation is very simple, crack slip is computed
as

u = Lγcr (15)

where u is the crack slip (in direction of the crack plane) and L is the element
length (projection of the finite element in direction perpendicular to the crack
plane normal vector).

If more than one crack develops at one integration point in 2D, the shear
stress τ remains equal to both bridging shear stresses τb,i and τb,j. Total shear
cracking strain can be split into the individual cracks as

γcr = γcr,i + γcr,j (16)

which can be written as
τ

DII

=
τ

DII,i

+
τ

DII,j

(17)

The total total cracking shear stiffness can be evaluated from the last equation
as

DII =
DII,iDII,j

DII,i +DII,j

(18)

The total cracking shear deformation is then distributed to the cracks accord-
ing to their stiffnesses.

γcr,i
γcr

=
1/DII,i

1/DII

=
DII,j

DII,i +DII,j

(19)

and
γcr,j
γcr

=
1/DII,j

1/DII

=
DII,i

DII,i +DII,j

(20)

Finally, the slipping displacement on i-th crack is

ui = Liγcr,i = Li
DII,j

DII,i +DII,j

γcr (21)

Following the same procedure, the magnitude of a crack slip on i-th crack
plane in 3D becomes

ui =
√
u2
i,j + u2

i,k =

√(
Li

DII,j

DII,i +DII,j

γcr,ij

)2

+

(
Li

DII,k

DII,i +DII,k

γcr,ik

)2

(22)
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4 Constitutive laws for matrix

The current implementation allows to choose from different types of softening
law, various approaches for reduction of shear stiffness (provided that cracking
has been initiated), and to choose from two conditions restricting the maximum
shear traction on a crack plane. This material model can be used as standalone
to describe the behavior of unreinforced concrete ConcreteFCM, or to describe
the matrix of a fiber-reinforced composite in FRCFCM model.

The model is described in the following sections and is summarized in Table 1.

4.1 Traction-separation law

Altogether there are 7 different options of the postpeak behavior. The choice is
controlled by keyword softType. The particular traction-separation law becomes
activated once the normal stress reaches the tensile strength ft of concrete. The
summary and the required input parameters is given in the list below.

• no softening (softType = 0) Material behavior is linear elastic.

• exponential softening (softType = 1)
Required parameters: Gf, ft.

σ = ft exp(−w/wf ) for w ≥ wmax (23)

σ = ft ×
w

wmax

exp(−wmax/wf ) for w < wmax (24)

wf = Gf/ft (25)

• linear softening (softType = 2)
Required parameters: Gf, ft.

σ = ft(1− w/wf ) for w ≥ wmax (26)

σ = ft w (wf − wmax)/(wmax · wf ) for w < wmax (27)

σ = 0 for wmax ≥ wf (28)

wf = 2Gf/ft (29)
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• Hordijk’s softening (softType = 3)
Required parameters: Gf, ft.
for w ≥ wmax:

σ = ft

[(
1 +

(
c1w

wf

)3
)

exp

(
−c2w

wf

)
− w

wf

(
1 + c3

1

)
exp (−c2)

]
(30)

for w < wmax:

σ = ft
w

wmax

[(
1 +

(
c1wmax

wf

)3
)

exp

(
−c2wmax

wf

)
− wmax

wf

(
1 + c3

1

)
exp (−c2)

]
(31)

for wmax ≥ wf :
σ = 0 (32)

wf = 5.14Gf/ft, c1 = 3, c2 = 6.93 (33)

• user-defined with respect to crack opening (softType = 4)
Required parameters: ft, soft w, soft(w).
for w ≥ wmax and soft wi−1 ≤ w < soft wi:

σ = ft

[
soft(w)i−1 +

soft(w)i − soft(w)i−1

soft wi − soft wi−1

(w − soft wi−1)

]
(34)

for w < wmax and soft wi−1 ≤ wmax ≤ soft wi:

σ = ft
w

wmax

[
soft(w)i−1 +

soft(w)i − soft(w)i−1

soft wi − soft wi−1

(w − soft wi−1)

]
(35)

• linear hardening (softType = 5)
Required parameters: ft, H, eps f
for εcr,max ≥ epsf σ = 0, otherwise

σ = (ft +H εcr,max)
εcr

εcr,max

(36)

• user-defined with respect to crack strain (softType = 6) required parame-
ters: ft, soft eps, soft(eps)
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for εcr ≥ εcr,max and soft epsi−1 ≤ εcr < soft epsi:

σ = ft

[
soft(eps)i−1 +

soft(eps)i − soft(eps)i−1

soft epsi − soft epsi−1

(εcr − soft epsi−1)

]
(37)

for εcr < εcr,max and soft epsi−1 ≤ εcr,max ≤ soft epsi:

σ = ft
εcr

εcr,max

[
soft(eps)i−1 +

soft(eps)i − soft(eps)i−1

soft epsi − soft epsi−1

(εcr − soft epsi−1)

]
(38)
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Figure 1: Traction-separation law for the exponential softening with ft = 2 MPa
and Gf = 100 N/m (softType 1).

4.2 Shear stiffness

The evaluation of the effective shear stiffnessGc of a cracked material is controlled
by shearType. For shearType = 0 no reduction is assumed and Gc = G. If
shearType = 1, a constant shear retention factor is used and

Gc = G× β (39)

The usually recommended value β = 0.01 is used in the case it is not user-defined
(keyword beta).
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Figure 2: Traction-separation law for the linear softening with ft = 2 MPa and
Gf = 100 N/m (softType 2).
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Figure 3: Traction-separation law according to Hordijk with ft = 2 MPa and
Gf = 100 N/m (softType 3).

With shearType = 2 the shear stiffness reduction is evaluated using shear
factor coefficient sF (keyword sf)

Gc =
GsFDcr,S

G+ sFDcr,S

(40)

where Dcr,S is the normal secant stiffness of the most weakened crack. Default
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value of the shear retention factor is sF = 20.
Finally, if shearType = 3, the shear retention factor is evaluated using the

user-defined piecewise linear function which depends on the maximum reached
crack opening and is given by fields beta w and beta(w).

4.3 Shear strength

It is also possible to limit the magnitude of the resulting shear stress acting
on crack plane. For shearStrengthType = 0 the shear stress is not limited, for
shearStrengthType = 1 the threshold is set to the value of the tensile strength,
ft.

A more realistic limit for the shear stress is activated with shearStrengthType
= 2; the shear stress cannot exceed the value proposed by Collins

τmax =
0.18
√
fc

0.31 + 24 wmax

ag+16

(41)

where fc is the compressive strength in MPa, τmax is the maximum shear stress
in MPa, ag is the aggregate diameter and wmax is the maximum crack opening
(both in mm). To use Collins’ aggregate interlock in OOFEM, define fc in MPa,
ag in length units of the analysis, and lengthscale 1 = dimensions in m, 1000 =
dimensions in mm, etc. This law is depicted for several aggregate sizes and two
concrete strengths in Fig. 4.

4.4 Summary

Description Fixed crack model for concrete
Record Format ConcreteFCM (in) # d(rn) # tAlpha(rn) #

E(rn) # n(rn) # [ ncracks(in) #] [ multipleCrack-
Shear ] [ crackSpacing(rn) #] [ softType(in) #]
[ shearType(in) #] [ shearStrengthType(in) #]
[ ecsm(rn) #] [ Gf(rn) #] [ ft(rn) #] [ beta(rn) #]
[ sf(rn) #] [ fc(rn) #] [ ag(rn) #] [ lengthscale(rn) #]
[ soft w(ra) #] [ soft(w)(ra) #] [ soft eps(ra) #]
[ soft(eps)(ra) #] [ beta w(ra) #] [ beta(w)(ra) #]
[ H(rn) #] [ eps f(rn) #]

Parameters - material model number
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- d material density
- tAlpha thermal dilatation coefficient
- E Young’s modulus
- n Poisson’s ratio
- ncracks maximum allowed number of cracks
- crackSpacing specified distance between parallel
cracks
- multipleCrackShear if not given, shear stiffness
computed from the dominant crack, otherwise all
cracks contribute
- softType allows to select suitable softening law:

0 - no softening (default)

1 - exponential softening with parameters Gf
and ft

2 - linear softening with parameters Gf and ft

3 - Hordijk softening with parameters Gf and ft

4 - user-defined wrt crack opening with param-
eters ft, soft w, and soft(w)

5 - linear hardening wrt strain with parameters
ft, H, and optionally eps f

6 - user-defined wrt strain with parameters ft,
soft eps, and soft(eps)

- shearType offers to choose from different ap-
proaches for shear stiffness reduction of a cracked
element

0 - no shear reduction (default)

1 - constant shear retention factor with param-
eter beta

2 - constant shear factor coefficient with param-
eter sf

3 - user-defined shear retention factor with pa-
rameters beta w and beta(w)
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- shearStrengthType allows to select a shear stress
limit on a crack plane

0 - no stress limit (default)

1 - constant strength = ft
2 - Collins interlock with parameters fc, ag, and

lengthscale

- ecsm method used for evaluation of characteristic
element size L: 1 = square root of area, 2 = pro-
jection centered, 3 = Oliver, 4 = Oliver modified,
0 (default) = projection
- Gf fracture energy
- ft tensile strength
- beta shear retention factor
- sf shear factor coefficient
- fc compressive strength in MPa
- ag aggregate size
- lengthscale factor to convert crack opening and
aggregate size in the case of Collins aggregate in-
terlock; 1 = analysis in meters, 1000 = in millime-
ters, etc.
- soft w specified values of crack opening and
- soft(w) corresponding values of traction normal-
ized to ft
- soft eps specified values of cracking strain and
- soft(eps) corresponding values of traction nor-
malized to ft
- beta w specified values of crack opening and
- beta(w) corresponding values of shear retention
factor
- H hardening modulus (expressed wrt cracking
strain)
- eps f threshold for cracking strain after which
traction is zero (applicable for linear hardening
only)

Supported modes 3dMat, PlaneStress, PlaneStrain
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Table 1: Fixed crack model for concrete – summary.

The following lines show a sample syntax specifying the fixed crack model with
volume density 24 kN/m3, thermal dilation coefficient 12 × 10−6 K−1, Young’s
modulus 20 GPa, Poisson’s ratio 0.2, fracture energy 100 N/m, tensile strength
2 MPa, linear softening, constant shear retention factor β = 0.05, Collins’ shear
strength (with compressive strength 30 MPa, aggregate size 0.01 m) and all
cracks contribute to the shear stiffness; the analysis uses [m], [MPa] and [MN]:
ConcreteFCM 1 d 24.e-3 talpha 12.e-6 E 20000. n 0.2 Gf 100e-6 ft 2.0

softType 2 shearType 1 beta 0.05 shearStrengthType 2 fc 30 ag 0.01

lengthscale 1. multipleCrackShear
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Figure 4: Dependence of the maximum shear strength on crack opening according
to (41) for fc = 20 MPa (top) and fc = 40 MPa (bottom).
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5 Constitutive laws for fibers

The presented material model for fibers cannot be used standalone but only as
an extension of the ConcreteFCM material model called FRCFCM model.

It is possible to choose from three different “classes” of fibers. This choice
is controlled by keyword fiberType: 0 = continuous aligned fibers (CAF), 1 =
short aligned fibers (SAF) and 2 = short random fibers (SRF). Currently, it is
not possible to combine more classes of fibers in one material model.

All of the above-mentioned fiber classes are further specified by their material
properties and geometry. Fiber dosage is captured by the dimensionless volume
fraction Vf (as decimal). All fibers are assumed to have a circular cross-section
and to possess the same geometry characterized by the diameter Df and length Lf
(the second parameter is applicable only for short fibers, in fiber class CAF the
fibers are idealized as “infinitely” long). The last geometry-related parameter is
the cross-sectional shear shape factor kfib, which is in the case of circular fibers
equal to 0.9 (default value); this parameter plays role only in shear stiffness of
an existing crack.

5.1 Influence of fiber type and orientation on Vf

Orientation of fibers with respect to the global coordinate system is for CAF
and SAF controlled by parameter orientationVector (in the input file this vector
need not be unit); for SRF the fiber orientation is random and all directions are
equally probable.

Fiber orientation vector directly influences the number of fibers crossing a
unit crack plane and thus the traction-separation law. For short random fibers
(where the orientation is equally probable in all directions in space, not in plane),
this number is

N = Ntot

∫ π/2

0

∫ Lf/2 cos(θ)

0

pzpθdzdθ = Ntot

∫ π/2

0

∫ Lf/2 cos(θ)

0

2

Lf
sin θdzdθ =

Ntot

2
(42)

V̄f,SRF = Vf/2 (43)

For continuous and short aligned fibers the effective fiber volume is

V̄f = Vf cos(θ) (44)

where θ is the angle between the fiber axis and the crack plane normal.
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Once the crack is formed, the bridging stress is transferred by both matrix
and fibers.

σb = σb,m + σb,f (45)

where σb,m and σb,f are the nominal (expressed per unit area of a crack) bridging
stresses in matrix and fibers. Consequently, this relationship can be rewritten in
terms of the effective stresses as

σb = σ̄b,m(1− Vf ) + σ̄b,f V̄f (46)

Note that the nominal stress in fibers is obtained by multiplying the effective
bridging stress in fibers by the effective fiber volume while the nominal stress
in matrix is independent of the fiber orientation and depends entirely on the
matrix volume Vm = (1 − Vf ). (The reason for this difference is that on one
hand the number of fibers crossing an inclined plane decreases with increasing
angle θ: N̄ = Ntot cos(θ) but on the other hand with the increasing angle θ the
area of the intersecting ellipse formed by the circular fiber and the crack plane
grows: Ā = A/ cos(θ); in the end, these two effects cancel out and the area of
the matrix on the crack plane remains unaffected.)

The material of fibers is modeled as linear elastic characterized by Young’s
modulus Ef (Ef in the input record) and Poisson’s ratio νf (nuf). On contrary
to steel fibers, polymeric fibers are highly anisotropic and so it makes much more
sense to define the combination of Young’s modulus and the fiber shear modulus
Gf (Gfib) (which appears only in the expression for the crack shear stiffness).

5.2 Overall elastic stiffness

The overall elastic stiffness of the fiber-reinforced composite is calculated for all
three classes of fibers as a weighted average of the two Young’s moduli

E = VfEf + (1− Vf )Em (47)

The Poisson ratio is considered to be equal to Poisson’s ratio of the matrix.
This simplification is not exact but is sufficient for the present purpose. What is
important is that it allows to use linear isotropic material in the elastic region.

5.3 Crack initiation

Similarly to ConcreteFCM, cracking is initiated once the tensile stress σ in matrix
reaches the tensile strength ft. If the material is undamaged, this tensile stress is
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calculated from the maximum principal stress σ = σ1. Criterion for the second
crack in 3D or plane strain is evaluated from the maximum tensile stress in the
crack plane. Finally, in the case of the second crack in plane stress or (3rd crack
in 3D), the tensile stress is evaluated in the perpendicular direction to the first
(and second) crack.

Before the onset of cracking the strains in the matrix and fibers can be treated
as mutually compatible and equal to the deformation of the composite

ε = εf =
σ̄f
Ef

= εm =
σ̄m
Em

(48)

In this simplified evaluation, the normal stress in the composite is the sum of
the effective stresses multiplied by their volume ratio

σ = (1− Vf )σ̄m + Vf σ̄f = σ̄m (1− V f + V fEf/Em) (49)

from which the effective stress in matrix can be expressed as

σ̄m =
σ

1− Vf (Ef/Em − 1)
(50)

5.4 Pull-out of a single fiber

If a fiber is bridging a crack, then the bridging force transferred by the fiber Fb
must be equal to an anchoring force Fa. This model assumes that the entire
anchoring force stems from the frictional bond stress between the fiber outer
surface and matrix. This stress becomes activated once the fiber starts to be
pulled out and the displacements of the fiber and matrix cease to be compatible.
A chemical bond is neglected.

The anchoring force can be computed as

Fa = F0 exp (fθ) (51)

where F0 is the resultant of the bond shear stress τs between the fiber and matrix
and f is a snubbing coefficient. This factor depends on the material of fibers and
captures an additional increase in the anchoring force of fibers which are not
oriented in the normal direction to the crack plane. In the special case when
f = 0, the fiber is pulled out over a non-frictional pulley and Fa = F0.

The distribution of the bond stress τs is assumed to be uniform on the fiber
surface and therefore its resultant can be computed as

F0 = πDfaτs (52)
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where a is the length of the zone where the fiber is debonded from the matrix. If
the debonded zone is smaller than the embedded length of the fiber, the relative
displacements of the fiber and matrix are negligible and τs can be treated as
constant τs = τ0. The debonded zone starts developing at the crack plane and
continues growing towards both ends of the fiber equally until it reaches the
closer tip. At this instant the shorter part of the fiber starts “sliding” and the
embedded length is decreasing. The transitional crack opening at which the
debonding has ceased and all fibers are being pulled out is denoted as w∗ and
can be analytically derived as

w∗ =
L2
fτ0

(1 + η)EfDf

(53)

where

η =
EfVf

Em(1− Vf )
(54)

Larger pull-out displacements can lead to significant physical changes in the fiber
surface which can result into changes in the bond shear stress. This phenomenon
is captured by function τs(w) relating the frictional bond to the crack opening and
is implemented in three alternative formulations. (In order to keep τs(w) = τ0 use
fssType = 0.) In conventional FRC with ordinary concrete matrix, the frictional
bond usually decreases with increasing slip. This is captured by a function
proposed by Sajdlová (fssType = 1):

τs(w) = τ0

[
1 + sign(b0)

(
1− exp

(
−|b0|w

Df

))]
(55)

where b0 is a micromechanical parameter. In composites with high-strength
matrix and coated high-strength steel fibers (HSFRC, UHPFRC) as well as in
SHCC materials with polymeric fibers, the frictional bond-slip relation often ex-
hibits hardening; this phenomenon can be well approximated by a cubic function
(activated with fssType = 2) proposed by Kabele

τs(w) = τ0

[
1 + b1

w

Df

+ b2

(
w

Df

)2

+ b3

(
w

Df

)3
]

(56)

or an alternative formulation which results in smooth changes in F0 (activated
with fssType = 3)

τs(w) = τ̃0 + τ0

[
b1
w̃

Df

+ b2

(
w̃

Df

)2

+ b3

(
w̃

Df

)3
]

(57)
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In the last two equations b1, b2 and b3 are micromechanical parameters and
additionally in the last equation w̃ = w−w∗, τ̃0 = τ0(1.−w∗/Lf )

−2 for SRF and
τ̃0 = τ0Ef (1 + η)Df/[Ef (1 + η)Df − 2Lfτ0] for SAF.

5.5 Traction-separation law for fibers

This section presents traction-separation laws for CAF, SAF and SRF classes of
fibers as well as the expressions for the secant and tangent stiffnesses. All these
expressions are formulated with respect to crack opening w.

The formulae given in the literature and presented also in the preceding
sections were derived under the assumption that the crack surface is perfectly
straight. However, owing to the presence of fibers which bridge the crack, the
surface can become distorted. The source of this deformation can be sought in
the shear stresses in the bond between the matrix and fibers. Crack opening is
increasing with the distance from the bridging fibers. In the vicinity of a fiber
the crack opening is smaller and therefore the actual pull-out displacement of a
fiber is smaller than the average crack opening. To capture this phenomenon,
the average crack opening is replaced by the “effective crack opening” w̄ defined
as

w̄ = w −∆w = Lεcr −∆w (58)

where ∆w is a parameter defined by keyword fibreActivationOpening. This pa-
rameter can be imagined as a “lag” of the fiber-related crack opening behind the
matrix-related crack opening.

One obstacle present in all traction-separation laws is the infinite derivative
at w̄ = 0+ which can easily spoil convergence if ∆w > 0. To overcome this
problem the traction-separation law can be smoothed near w = ∆w by a third-
order polynomial. The resulting function is then continuous in values and first
derivatives. This smoothing starts at w = ∆w − ∆w0 and terminates at w =
∆w+∆w1 where ∆w0 and ∆w1 are positive parameters (in the input record dw0
and dw1, default value is zero). This smoothing technique is demonstrated in
Fig. 5.

Another simplification present in the derivation is that the matrix is ideally
brittle and in the crack does not transfer any stresses which is not true in the
case of the cohesive crack. However, it turns out that the arising differences
are very small (less than 1%). The formula for the traction separation law and
continuous aligned fibers derived under the assumption that the crack surfaces
transfer traction is for the purpose of comparison presented in the following
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Figure 5: Original and smoothed traction-separation law for CAF fibers; ∆w = 1
µm, smoothing from 0.9 to 1.1 µm.

section.

5.5.1 Continuous Aligned Fibers (CAF)

The nominal bridging stress (as well as stiffness) of the aligned fibers which
are not perpendicular to the crack plane σb,f,θ can be very easily obtained by
multiplying the nominal bridging stress of fibers perpendicular to crack σb,f by
two terms: the first one reflecting lower volume of inclined fibers passing through
the crack plane and the second one capturing the snubbing effect:

σb,f,θ = σ̄b,f V̄f exp(θf) = σb,f cos(θ) exp(θf) (59)

For the continuous aligned fibers perpendicular to crack, the nominal bridging
stress can be derived as

σb,f = 2Vf

√
Ef (1 + η)τ0

Df

w̄ (60)

If the influence of the normal traction transferred by matrix is not neglected, an
additional term which is negligible compared to the first one and is decreasing
with crack opening appears in the expression for the bridging stress.

σb,f = Vf

(
2

√
Ef (1 + η)τ0

Df

w̄ + σ̄b,m
Ef
Em

)
(61)
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Tangent stiffness in the normal direction of the cohesive crack is then the
partial derivative of (60) with respect to cracking strain

DI,T =
∂σb,f
∂εcr

= VfL

√
Ef (1 + η)τ0

Df w̄
(62)

5.5.2 Short Aligned Fibers (SAF)

The constitutive equation describing the normal bridging stress carried by short
aligned fibers has a different form when some fibers undergo debonding and some
pullout and when all fibers are being pulled out. A transition between these two
modes is defined by the the opening displacement w∗ (53). Note that these two
functions do not have to be continuous in values - this depends on the choice of
τs(w).

σb,f (w) = 2Vf

√
Ef (1 + η)τ0w̄

Df

− VfEf (1 + η)w̄

Lf
for w̄ < w∗ (63)

σb,f (w) =
VfLfτs(w)

Df

(
1− 2w̄

Lf

)2

for w∗ ≤ w̄ < Lf/2 (64)

σb,f (w) = 0 for w̄ > Lf/2 (65)

Tangent stiffness can be expressed as

DI,T (w) = VfL

(√
(1 + η)Efτ0

Df w̄
− (1 + η)Ef

Lf

)
for w̄ < w∗ (66)

DI,T (w) = −4Vfτs(w)L

Df

(
1− 2w̄

Lf

)
for w∗ ≤ w̄ < Lf/2 (67)

DI,T (w) = 0 for w̄ > Lf/2 (68)
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5.5.3 Short Random Fibers (SRF)

Similarly to SAF the constitutive equations and tangent stiffnesses are expressed
separately for w ≶ w∗:

σb,f (w) =
gVfLfτ0

2Df

(
2

√
w̄

w∗ −
w̄

w∗

)
for w̄ < w∗ (69)

σb,f (w) =
gVfLfτs(w)

2Df

(
1− 2w

Lf

)2

for w∗ ≤ w̄ < Lf/2 (70)

σb,f (w) = 0 for w̄ > Lf/2 (71)

DI,T (w) =
gVfLfτ0L

2Dfw∗

 1√
w̄
w∗

− 1

 for w̄ < w∗ (72)

DI,T (w) = DI,T = −4gVfτs(w)L

2Df

(
1− 2w̄

Lf

)
for w∗ ≤ w̄ < Lf/2 (73)

DI,T (w) = 0 for w̄ > Lf/2 (74)

Here, g is the snubbing factor defined as

g = 2
1 + exp(πf/2)

4 + f 2
(75)

5.5.4 Unloading and reloading

Compared to the bridging stress in matrix, the stress in fibers does not decrease
linearly to origin when the crack is unloading. Current implementation uses a
power function

σb,f (w) = σb,f (wmax)

(
w̄

w̄max

)M
(76)

where wmax is the maximum crack width reached in the entire previous history
and M is a positive constant, its default value is M = 4. See Fig. 6 for an
example of the unloading and reloading paths with M = 4.

The tangent stiffness for unloading and reloading is then

DI,T = σb,f (wmax)
ML

w̄max

(
w̄

w̄max

)M−1

(77)

29



 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10

st
re

ss
 [M

P
a]

w [µm]

Figure 6: Unloading and reloading paths of the fiber reinforcement (nominal
stress, continuous aligned fibers, ∆w = 1 µm).

5.6 Crack shearing

The influence of crack opening and sliding on the bridging shear stress carried
by fibers is expressed as

τb,f = V̄fkGf
u

wmax
=
V̄fkGf

εcr,max
γcr = DII,fγcr (78)

where V̄f is the effective volume of fibers crossing a crack plane (Vf/2 for SRF
and Vf cos(θ) for CAF and SAF), k is the fiber cross-section shape correction
factor and Gf is the fiber shear modulus. This expression is motivated by hy-
pothesis that the fibers bridging the crack planes behave as the Timoshenko
beams subjected to shear. Note that the shear stiffness of fibers is not recovered
upon unloading.

5.7 Damage of bridging fibers caused by crack shearing

It has been found, both by numeric simulations and experiments, that in some
high performance fiber reinforced cement composites, especially SHCC with poly-
meric fibers, fibers rupture when cracks are exposed to shearing. This phe-
nomenon is modeled by damage parameter ω, which accounts for the ratio of
ruptured fibers and varies between the values of 0 and 1: ω = 0 means that
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no fibers ruptured while ω = 1 indicates rupture of all bridging fibers. It is as-
sumed that ω depends on the maximum shear strain sustained by the protruding
portions of bridging fibers throughout the loading history. This strain can be
expressed as:

γf,max = max

(
|ui(t)|

max (wi(t))

)
. . . w(t) > ∆w (79)

where ui is the crack sliding displacement (CSD) and and wi is the maximum
value of the crack opening displacement of the i-th crack. This means that the
damage does not grow if the crack closes (crack opening decreases). If more
cracks exist, the maximum contribution is considered.

Two different one-parameter damage evolution laws are currently implemented.
For fDamType = 0 the damage is deactivated, with fDamType = 1 damage is
described by

ω(γf ) = min

(
γf
γfc

, 1

)
(80)

and finally with fDamType = 2

ω(γf ) = 1− exp

(
− γf
γfc

)
(81)

where γfc (gammaCrack in the input record) is a material parameter. The two
functions are shown in Fig. 7.

A special care must be given to a case with small opening which can easily re-
sult into complete loss of integrity (complete damage). Since damage reduces the
number of crack-bridging fibers, which is proportional to the fiber volume frac-
tion, its effect can be suitably implemented by introducing the effective volume
fraction

V ∗
f = Vf (1− ω) (82)

which results into modifications of the traction-separation relationship

σb,f,ω = σb,f (1− ω) (83)

and both normal and shear crack stiffness

DI,f,ω = DI,f (1− ω) (84)

DII,f,ω = DII,f (1− ω) (85)

The decrease in fiber volume is assumed to be the same for all crack planes,
independently of fiber type and fiber orientation (for CAF and SAF).
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Figure 7: Evolution of fiber damage according to equations (80) and (81); pa-
rameter γfc is in both cases set equal to 1 and ∆w = 0.).
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6 Composite bridging model

6.1 Bridging stress and crack stiffness

For stresses below the strength limit, the behavior of the composite is not char-
acterized entirely by the matrix, even though its contribution is dominant. The
elastic stiffness matrix is constructed from the overall elastic stiffness (47) and
from Poisson’s ratio of the matrix. Once the principal stress in the matrix ex-
ceeds its tensile strength, the traction across the crack is transferred jointly by
matrix and fibers.

Total composite normal bridging traction σb is obtained by summing up the
(nominal) contribution from matrix σb,m and fibers σb,f . The normal traction is
equal to the normal stress σ

σb = σb,m + σb,f = σ̄b,m(1− Vf ) + σ̄b,f V̄f = σ (86)

Similarly, the shear stress must be equal to shear traction which is the sum of
two components: shear traction transferred by the matrix and by fibers

τb = τb,m + τb,f = τ (87)

In these two equations, all bridging stresses are functions of a crack opening
w (displacement normal to crack plane) and crack sliding u (displacement in
direction of the crack plane).

The normal and shear stiffness of the i-th crack is a sum of the individual
nominal normal stiffnesses

DI,i = DI,f,i +DI,m,i (88)

DII,i = DII,f,i +DII,m,i (89)

The nominal stiffnesses of matrix Dm is a product of the effective stiffness
and (1− Vf ) while the nominal stiffness of fibers Df is a product of the effective
stiffness and V̄f .

One example of the dependence of the total bridging stress on the crack
opening is shown in Fig. 8; it was computed with short random fibers and both
short and long aligned fibers oriented perpendicular to the crack surface, Em = 20
GPa, ft = 2 MPa, Gf = 5 N/m, exponential softening, Ef = 20 GPa, Vf = 0.02,
Df = 40 µm, Lf = 12 mm, τ0 = 0.5 MPa, f = 0.5, fiber activation opening 1
µm, smooth transition from 0.9 to 1.1 µm.
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Figure 8: Total bridging stress (thick curves) and fiber bridging stress (thin
curves) for CAF, SAF and SRF classes computed with fiber activation opening
1 µm and a smooth transition (thick curves only).

6.2 Crack-spacing

In the simulations of specimens and structures made of fiber reinforced compos-
ites it can become convenient to use a finite element mesh with nonuniform size
of finite elements. Four different cases need to be considered: 2 for material
which exhibits tension softening and 2 other for material with strain hardening.

If the material exhibits tension-softening and the finite element size is
small – less than the real distance between cracks – no special treatment needs
to be employed. For material with strain-softening, mesh with bigger ele-

34



ments and the material exhibits multiple cracking (e.g. reinforced concrete),
it is essential to introduce user-defined crack spacing. This procedure preserves
objectivity by assuming that more parallel cracks can develop in one element.
The crack spacing distance is controlled by keyword crackSpacing.

To guarantee a smooth transition, the number of parallel cracks, which can
develop in one element, is not an integer; it is defined as

Ncr = 1 . . . if crack spacing ≥ L (90)

Ncr =
L

crack spacing
. . . if crack spacing < L (91)

This number of fictitious parallel cracks Ncr is then used to compute the adjusted
element size L̂ = L/Ncr in the crack-band approach. Additionally, the number of
parallel cracksNcr is utilized in computing the effective crack opening ŵ = w/Ncr,
and slip û = u/Ncr which appear in the traction-separation and damage evolution
laws. Moreover, more than one parallel cracks lead to reduction in the overall
normal and shear stiffnesses. The normal stiffness is both for matrix and fibers
derived for the effective crack opening hatw and the total stiffness is then divided
by the number of parallel cracks to reflect that the crack stiffnesses are connected
in series.

D̂I = DI(ŵ)/Ncr (92)

Similar formula holds also for the shear stiffness of matrix:

D̂II,m = DII,m(ŵ)/Ncr (93)

Interestingly, the shear stiffness of fibers is independent of the number of parallel
cracks (of course except for the effect of damage ω which depends on the ratio
û/ŵ).

The crack spacing at the crack saturation state can be for the strain-hardening
materials derived analytically. This distance depends on the fiber type, fiber vol-
ume quantity, length and diameter, matrix tensile strength, strength of the bond
between fiber and matrix, and snubbing.

xCAF =
(1− Vf ) ftDf

4Vfτ0

(94)

xSAF = 0.5
√
L2
f − 4LfxCAF (95)
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λ =
2

π

4 + f 2

1 + exp (πf/2)
(96)

xSRF =
1

2

(
Lf −

√
L2
f − 2πLfλxCAF

)
(97)

If the element size is larger than the computed crack spacing, the same treat-
ment as for the strain-softening materials should be employed. In order to the
activate automatic evaluation of the crack spacing use string computeCrackSpac-
ing instead of crackSpacing. On contrary to this, the finer finite element mesh
calls for the nonlocal approach described in Section 7.

The material parameters are summarized in Tables 1 (matrix) and 2 (fiber
extension).

Description Fixed crack model for FRC
Record Format FRCFCM input record of ConcreteFCM Vf(rn) #

Lf(rn) # Df(rn) # Ef(rn) # [ nuf(rn) #] [ Gfib(rn) #]
[ kfib(rn) #] tau 0(rn) # [ b0(rn) #] [ b1(rn) #]
[ b2(rn) #] [ b3(rn) #] f(rn) # [ M(in) #] [ fibreOrienta-
tionVector(ra) #] [ fssType(in) #] [ fDamType(in) #]
[ fiberType(in) #] [ gammaCrack(rn) #] [ com-
puteCrackSpacing ] [ fibreActivationOpening(rn) #]
[ dw0(rn) #] [ dw1(rn) #]

Parameters - Vf fiber content expressed as decimal
- Lf fiber length
- Df fiber diameter
- Ef fiber Young’s modulus
- nuf fiber Poisson’s ratio
- Gfib fiber shear modulus (read when nuf is not
provided)
- kfib fiber cross-sectional shape correction factor
- tau 0 bond shear strength at zero slip
- b0 micromechanical parameter for fiber shear ac-
cording to Sajdlová
- b1, b2, b3 micromechanical parameter for fiber
shear according to Kabele
- f snubbing friction coefficient
- M exponent related to fiber unloading
- fibreOrientationVector vector specifying orienta-
tion for CAF and SAF fibers
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- fssType type of Fiber bond Shear Strength (bond
shear strength vs. crack opening)

0 - constant shear strength

1 - bond shear strength with parameter b0

2 - bond shear strength with parameters b1, b2,
b3

3 - bond shear strength with parameters b1, b2,
b3 which leads to smooth traction-separation
law

- fDamType type of damage law for fibers

0 - no damage

1 - damage controlled by shear slip deformation
of the crack (with gammaCrack), linear law

2 - damage controlled by shear slip deformation
of the crack (with gammaCrack), exponential
law

- fiberType class of reinforcing fibers

0 - CAF (continuous aligned fibers)

1 - SAF (short aligned fibers)

2 - SRF (short randomly oriented fibers)

- gammaCrack crack shear strain parameter ap-
plicable with fDamType = 1 or 2 (here the crack
shear strain is understood as the crack slip u di-
vided by the crack opening w)
- computeCrackSpacing crack spacing is evaluated
automatically based on defined composition
- fibreActivationOpening crack opening at which
the fibers begin transferring bridging stress
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- dw0, dw1 applicable only if fibreActivationOpen-
ing 6= 0, then it allows to smoothen the traction-
separation law for fibers; lower bound is fibreActi-
vationOpening - dw0 and the upper bound is fibre-
ActivationOpening - dw1

Supported modes 3dMat, PlaneStress, PlaneStrain
Table 2: Fixed crack model for fiber reinforced concrete
– summary.

The following lines show a sample syntax for material with fixed cracks re-
inforced by continuous aligned fibers with volume density 24 kN/m3, thermal
dilation coefficient 12× 10−6 K−1, Young’s modulus of the matrix 20 GPa, Pois-
son’s ratio of matrix 0.2, fracture energy of matrix 100 N/m, tensile strength of
matrix 2 MPa, linear tension softening, constant shear retention factor β = 0.05,
unlimited shear strength (shearStrengthType = 0), continuous aligned fibers,
fiber volume Vf = 2%, fiber diameter Df = 0.04 mm, Young’s modulus of fibers
Ef = 20 GPa, shear modulus of fibers Gf = 1 GPa, fiber-matrix bond strength
τ0 = 1 MPa, snubbing coefficient f = 0.7, shear correction coefficient k = 0.9,
deactivated fiber damage, fiber act if COD exceeds 10 µm (with smoothing from
w = 8to11 µm), fiber orientation at 45 degrees in x-y plane, automatic evaluation
of crack spacing from composition; the analysis uses [m], [MPa] and [MN]:
FRCFCM 1 d 24.e-3 talpha 12.e-6 E 20000. n 0.2 Gf 100e-6 ft 2.0

softType 2 shearType 1 beta 0.05 FiberType 0 Vf 0.02 Df 0.04e-3

Ef 20000. Gfib 1000. tau 0 1. FSStype 0 f 0.7 kfib 0.9 fDamType 0

fibreactivationopening 10.e-6 dw0 2.e-6 dw1 1.e-6 orientationVector

3 1. 1. 0. computeCrackSpacing
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7 Nonlocal model for SHCC

As already mentioned in Sections 2 and 6.2, the local model FRCFCM must
not be used for cementitious materials which exhibit strain hardening. If it is
used, then the results will become strongly dependent on the density of the finite
element mesh as the damage would tend to localize into all elements in the critical
region. The more uniform is the loading (e.g. direct tension, four point bending),
the more the results become influenced by the size of the finite elements. This
behavior is demonstrated later in Sections 9 and 10.

The experiments indicate that in SHCC the cracks tend to localize into a
pattern with a characteristic length – the crack spacing distance. This distance
can be under certain simplifications derived analytically; it depends on not only
on the properties and the class of fibers and matrix but also on the strength of
the interfacial bond and on the snubbing friction should the fibers be oriented
at an inclined angle with respect to the crack. The crack spacing distance is for
different fiber classes given by equations (94)-(97).

The crack initiation criterion as well as the mutual interaction between cracks
is in this model established by a new concept based on a “nonlocal” fiber stress.

7.1 Conceptual idea of nonlocal fiber stress

In a uniaxial tensile test, the resultant of a stress transferred by a crack must be
equal to the loading forces acting at the ends of the specimen as well as to a stress
resultant created in an arbitrary section. A schematic representation of this test
is shown in Figure 9. The stress σ which initiated cracking and produced its
opening w must be in equilibrium with the sum of the nominal bridging stresses
(without bars, see the bottom picture in Fig. 9) in fibers and matrix (45). The
nominal stress can be computed as the effective stress (with bars, see the top
picture in Fig. 9) multiplied by the (effective) volume fraction. Up to a distance a
from the crack, the displacements of the matrix and fibers are not compatible, the
fibers are debonded; this gives rise to the frictional bond stress τ . The resultant
of the bond stresses acting on a single fiber is in equilibrium with the resultant
of the effective bridging stress σ̄b,f . If the magnitude of the bridging bond stress
is independent of the bond slip and the fibers are aligned and perpendicular to
the crack, the stress in fibers is diminishing linearly with the distance from the
crack until x = a. At x = a the displacements become compatible and so the
value of the nominal stress is a constant depending on the deformation, Young’s
moduli of the matrix and fibers and the volume fraction of fibers.
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The “nonlocal” fiber stress mentioned earlier is in fact the nominal stress
in fibers σf which is evaluated from the bridging stress and the distance from
the crack. This stress then plays a significant role in the criterion for the crack
initiation (105) because, as shown in the bottom part of Fig. 9, σ is split in the
investigated cross-section into σf = σNL and σm. Providing that x < a, then
the resulting effective stress in matrix (which is compared to the tensile strength
ft) is way lower than according to (50). Similarly, if the distance between two
cracks is smaller than a, then the bridging stresses in fibers start interacting.

w

x

σ
τ

Vf

a

σ

σm

σf

σbf

σbm

τ

1− Vf
σ̄bf

σ̄bm
τ

σ̄f
σ̄m

σσ

Figure 9: A schematic depiction of nominal and effective stresses in matrix and
fibers at the vicinity of a crack. For x ≤ a, where a is the length of the debonded
zone (98), the effective stress in the matrix σ̄m is computed from equation (105).

7.2 Evaluation of nonlocal stress

The nominal value of nonlocal stress σNL at a certain distance from the “source”
crack is influenced by several factors. The key component is the effective value
of the bridging stress σ̄b,f transferred by the fibers in the target crack; the value
of this stress must be high enough to cause debonding of fibers from the matrix
in the region where the nonlocal stress is evaluated. If the nonlocal stress is
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evaluated outside the debonded zone, it is zero (because the strains in matrix
and fibers are compatible and hence no “prestress” in fibers can develop).

To compute the nonlocal stress in fibers σNL is very computationally demand-
ing because it is evaluated in all integration points in all elements which are in
a vicinity of a crack; this distance is characterized by the nonlocal radius r. In
the case of the short fibers r cannot exceed half of the fiber length; in the case
of long fibers (CAF), r depends on the fiber diameter and bond friction and can
be roughly estimated as (94).

Compared to typical nonlocal models in which the nonlocal quantity at a
certain point is computed as a nonlocal average in nonlocal radius r, here the
nonlocal stress in fibers σNL is taken as the maximum contribution.

The nonlocal stress is calculated from the nominal value of the fiber bridging
stress which is subsequently reduced to take into account

• friction at the crack surface (idealized to behave as a frictional pulley)
provided that the fibers are randomly oriented or in the case of aligned
fibers the orientation is not aligned with the crack normal

• bond friction between the fiber surface and matrix

• angle φ between the normal vector of the target crack (or the principal
stress vector) and the fiber orientation vector (CAF, SAF) or normal vector
of the source crack (SRF).

The computed length of the zone a (where the fiber is debonded from the
matrix) is independent of the fiber class as well as on the angle between the
fiber and the crack normal. Under certain assumptions and simplifications this
distance can be derived as

a =

√
EfDf∆

2τ0(1 + η)
(98)

where ∆ is the pull-out displacement. If the composite contains short fibers
and should the debonded length according to (98) exceed Lf/2, then a is set to
Lf/2. This function is shown for typical values of material parameters in Fig. 10.
However, this does not mean that the length of the debonded zone is the same
for different classes of fibers and the same bridging stress.

Friction of fibers at the crack surface (captured by snubbing coefficient f) as
well as their increasing inclination increase the bridging stress σb,f but also the
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Figure 10: Dependence of the debonded length on crack opening evaluated ac-
cording to (98) with Ef = Em = 20 GPa, Df = 40 µm, τ0 = 0.5 MPa and fiber
activation opening 1 µm.

difference between the bridging stress and the stress in fibers just behind the
crack surface σf (0) = σf,0 which can be derived as

σf,0 =
2

3g
σb,f . . . for SRF (99)

σf,0 =
1

cos(θ) exp(fθ)
σb,f . . . for CAF and SAF (100)

where θ is the angle between the fiber orientation vector and the crack normal.
This normal stress is oriented in direction of the crack normal in the case of
random fibers and in direction of fibers in the case of aligned fibers.

Consequently, the fiber stress is decreasing with distance from the crack and
the source stems from the bond friction. The cumulative decrease is denoted as
∆σf and can be expressed as

∆σf (x) =
4Vfτ0x

Df

. . . for CAF (101)

∆σf (x) =
4Vfτs (Lfx− x2)

DfLf
. . . for SAF (102)

∆σf (x) =
4Vfτs (Lfx− x2)

3DfLf
. . . for SRF (103)
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In the last two equations τs is equal to τ0 if w < w∗, otherwise τs = τs(w).
To summarize, the nominal stress in given Gauss point is computed as

σNL = max (σf,0 −∆σf ) cos(φ) (104)

The implemented algorithm in OOFEM is described in a schematic picture
in Figure 11. The element in the center of the red circle contains crack(s) in
its integration points and is a source of the fiber stress which is evaluated in its
surrounding elements whose centers fall

• within the red circle with diameter a evaluated from (98) and

• within the blue band given by the projection of the source element in
direction of the fiber orientation vector (CAF, SAF) or in direction of the
crack normal (SRF). (In the individual integration points the normal vector
can be different.)

Next, the fiber stress is computed from equation (104). The fiber bridging
stress σb,f in the source element and the reduction caused by snubbing (σb,f−σf,0)
(99), (100) can be different in all integration points in that element. The distance
x, used for evaluation of the fiber stress reduction ∆σf (101)–(103) caused by the
interfacial bond stress, is computed from the coordinates of elements’ centers.
This is done for all integration points of the source element and the result is the
maximum value.

A natural question arises what happens with the fiber stress in uncracked
region if the crack undergoes unloading. When the crack is loaded, the fiber
bridging stress is equilibrated by the resultant of shear stress τ as shown in
Figure 12. The distribution of this stress and the debonded length a depends
on the fiber class (CAF, SAF, SRF) and on the magnitude of the bond stress
τ . During unloading the bridging stress in fibers decreases until it completely
vanishes; during this phase the stretched fiber is being partially pulled back into
the matrix. This reversed displacement gives rise to the bond stresses acting
in the opposite direction than before. The resultant of the bond stresses must
be in equilibrium. If the bond stress developing after unloading is of the same
magnitude as the stress acting during loading, one half of the fiber (a/2) will be
pulled away from the crack and the other half will be dragged into the crack and
the stress distribution on the farther end of the fiber will remain unaffected. The
largest “prestress” would be in the distance a/2 from the crack, see Figure 12.
However, larger magnitude of the reversed bond stress would shift the position of
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Figure 11: Evaluation of the stress in fibers in the vicinity of an element con-
taining a crack. The stress in nonzero only in elements which fall into the circle
with radius a (shown in red) and are in the band (shown in blue) defined by the
projection of the element in the direction of the fiber orientation vector (CAF
and SAF fibers) or the crack orientation (SRF fibers).

the maximum prestress towards the crack as indicated by the dotted line. Since
the magnitude of this bond stress is questionable (the pulled out fiber can be
bent over the crack face or its face can be scratched) and therefore the position
of the peak of the prestress is uncertain, the fiber stress in the uncracked region
is for simplicity idealized as never decreasing, it can only grow.

Distribution of the fiber bridging and nonlocal stresses evaluated according
to equations (99)–(104) is shown in Fig. 13. The horizontal axis in this figure is
in the case of the inclined aligned fibers not the normal direction to the crack
surface, it is the distance measured along the fibers; similarly, the (nominal)
nonlocal stress is not evaluated in the normal direction but in direction of the
fibers. This figure nicely shows that the length of the debonded zone is indeed the
same for different fiber orientations, alignment and length. It is also interesting

44



a∆

σm

σfσbf

σbm

σ

τ

σm
σf

σb = 0

σ = 0

σ
a

τ

A

A A-A

σf

σm

Figure 12: Distribution of nominal stresses in the matrix and fibers near the
loaded (left) and unloaded (middle) crack. The middle figures demonstrate that
even after unloading the material is not stress-free, the matrix is in compression
and the fibers transfer tension, as shown in the right picture.

to examine the difference between the fiber bridging stress (shown for x < 0
and the nonlocal stress just behind the crack surface, σf,0. At constant angle θ
(the angle between crack normal and the fiber orientation vector) the difference
between these two stresses increases with increasing snubbing coefficient f . On
the other hand, at large angle θ the bridging stress can be smaller than the
nonlocal stress; the reason for this follows from the number of fibers crossing
the crack which is very small for large θ which in turn leads to a small value
of nominal stress. On contrary, in the direction of fibers, the volume fraction
remains the same and is equal to Vf . The curves in Fig. 13 were obtained with
Ef = Em = 20 GPa, Vf = 0.02, Df = 40 µm, Lf = 12 mm, τ0 = 0.5 MPa,
f = 0.5, and crack opening 1 µm, 10 µm and 30 µm.

7.3 Crack initiation

In the nonlocal model the crack becomes initiated once the highest positive
stress in matrix exceeds its tensile strength ft. The effective stress in the matrix
is computed as a difference of the investigated normal stress and the nonlocal

45



stress in the same direction divided by the volume fraction of matrix,

σ̄m =
σ − σNL
1− Vf

(105)

The material parameters are summarized in Tables 1 (matrix), 2 (fiber ex-
tension), and 3 (nonlocal extension).

Description Nonlocal fixed crack model for FRC
Record Format FRCFCMNL input record of ConcreteFCM and

FRCFCM r(rn) # wft(in) #
Parameters - r nonlocal radius (reasonable value is several mil-

limeters and its maximum is Lf/2 for short fibers)
- wft nonlocal averaging function, must be set to 4
(constant function)

Supported modes PlaneStress
Table 3: Nonlocal fixed crack model for fiber reinforced
concrete – summary.

The following the material definition can be treated as an example of SHCC
material with volume density 24 kN/m3, thermal dilation coefficient 12×10−6 K−1,
properties of the matrix: Young’s modulus 20 GPa, Poisson’s ratio 0.2, frac-
ture energy 5 N/m, tensile strength 2 MPa, exponential softening, constant shear
retention factor β = 0.01, unlimited shear strength (shearStrengthType = 0),
properties of the fibers: short random fibers, volume fraction Vf = 2%, di-
ameter Df = 0.04 mm, length Lf = 12 mm, Young’s modulus of Ef = 20 GPa,
shear modulus Gf = 1 GPa, fiber-matrix bond strength τ0 = 0.5 MPa, snubbing
coefficient f = 0.5, shear correction coefficient k = 0.9, deactivated fiber damage,
fiber act if COD exceeds 1 µm (with smoothing from w = 0.9 to 1.1 µm); the
analysis uses [m], [MPa] and [MN]:
FRCFCMNL 1 d 24.e-3 talpha 12.e-6 E 20000. n 0.2 Gf 5.e-6 ft 2.0

softType 2 shearType 1 beta 0.01 FiberType 2 Vf 0.02 Df 0.04e-3

Lf 12.e-3 Ef 20000. Gfib 1000. tau 0 0.5 FSStype 0 f 0.5 kfib 0.9

fDamType 0 fibreactivationopening 1.e-6 dw0 1.e-7 dw1 1.e-7 r 6.e-3

wft 4
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Figure 13: Fiber bridging stress (for x < 0) and the fiber nonlocal stress for
CAF, SAF and SRF and θ = 0 (top), θ = 30◦ (middle), and θ = 60◦ (bottom).
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8 Tests

This section describes a collection of tests performed on a single finite element.
These tests serve to verify that the numerical results correspond to the analytical
or expected solution as well as to easily check that the changes in the finite ele-
ment code performed by the other developers and contributors do not interfere
with this material model. The first and the second set of tests examine the be-
havior in uniaxial loading of ConcreteFCM and FRCFCM material models while the
third and the fourth set investigate the shear with the interaction of preexisting
cracks.

There are two packages of test files which give exactly the same results. The
first condensed (the detailed tests performed on a single finite element are merged
in a single file to run more efficiently) package is in the OOFEM tests/sm folder
and in those tests the errorcheck mode is activated. If the computed value does
not match the defined value an error message is produced. The second group
of tests is here in the documentation folder. When the file is run in OOFEM,
postprocessed with extractor.py, then the corresponding *.gnu file will give the
graphical output (in postscript); such outputs are presented hereafter.

In the subsequent figures the lines usually correspond to the analytical solu-
tion and the black points to the numerical. The crack width is evaluated from
the computed results as w = (ε − σ/E)h where the member in the parentheses
is equal to the cracking strain εcr.

The material parameters are specified in compatible units with m and MN.
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8.1 ConcreteFCM in tension
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Figure 14: Geometry (left) and the loading program (right) for the tensile tests.
The analysis runs in plane stress under a direct displacement control. The elastic
properties are E = 20 GPa and ν = 0.2.
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Figure 15: Test concrete fcm st 0, geometry and loading according to Fig. 14,
the material behaves as linear elastic (softType 0).
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Figure 16: Test concrete fcm st 1, geometry and loading according to Fig. 14,
the postpeak behavior is with exponential softening (softType 1), ft = 2 MPa
and Gf = 100 N/m .

 0

 1

 2

 0  0.1  0.2  0.3
 0

 50

 100

st
re

ss
 [M

P
a]

fr
ac

tu
re

 e
ne

rg
y 

[N
/m

]

w [mm]

Figure 17: Test concrete fcm st 2, geometry and loading according to Fig. 14,
the postpeak behavior is with linear softening (softType 2), ft = 2 MPa and
Gf = 100 N/m .
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Figure 18: Test concrete fcm st 3, geometry and loading according to Fig. 14,
the postpeak behavior is with softening according to Hordijk (softType 3),
ft = 2 MPa and Gf = 100 N/m .
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Figure 19: Test concrete fcm st 4, geometry and loading according to Fig. 14,
the postpeak behavior is user-defined (softType 4), ft = 2 MPa, soft w 4

0. 2.e-5 4.e-5 15.e-5 soft(w) 4 1. 0.5 0.3 0.1.
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Figure 20: Test concrete fcm st 5, geometry and loading according to Fig. 14,
the postpeak behavior is with linear hardening (softType 5), ft = 2 MPa, H
100. eps f 1.e-2
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Figure 21: Test concrete fcm st 6, geometry and loading according to Fig. 14,
the postpeak behavior is captured by user-defined strain-dependent behavior
(softType 6), ft = 2 MPa, soft eps 4 0. 1e-4 2e-4 1e-3 soft(eps) 4
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Figure 22: Test concrete fcm unlo and the associated loading; geometry is ac-
cording to Fig. 14, the postpeak behavior is with exponential softening (softType
1), ft = 2 MPa and Gf = 100 N/m .
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Figure 23: Test concrete fcm crack spacing, geometry and loading from
Fig. 14 is modified - the horizontal dimension and the magnitude of the pre-
scribed displacement are doubled, the postpeak behavior is with exponential
softening (softType 2), ft = 2 MPa and Gf = 100 N/m .
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8.2 FRCFCM in tension

If not stated otherwise, the matrix in the following examples is characterized
by following material properties: E = 20 GPa, ν = 0.2, ft = 2 MPa, Gf =
100 N/m, linear softening (softType 2). The fiber content is Vf , diameter
Df = 40 µm, elastic modulus Ef = 20 GPa, shear modulus Gfib = 1 GPa,
strength of bond between fiber and matrix τ0 = 1 MPa, snubbing coefficient
f = 0.7, fiber cross-section correction factor k = 0.9 (Vf 0.02 Df 0.04e-3 Ef

20000. Gfib 1000. tau 0 1. f 0.7 kfib 0.9). The default value for the ex-
ponent M (unloading-reloading) is 4. With one exception, all verification tests
use the geometry defined in Fig. 14.
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Figure 24: Loading program for the tensile tests of the fiber-reinforced material.
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Figure 25: Test frcfcm 1 CAF, loading described in Fig. 24a; continuous aligned
fibers (FiberType 0), fibers are oriented in direction of x-axis (default option).
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Figure 26: Test frcfcm 2 SAF, loading described in Fig. 24a; short aligned fibers
(FiberType 1), fibers are oriented in direction of x-axis (default option).
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Figure 27: Test frcfcm 3 SRF, loading described in Fig. 24a; short random fibers
(FiberType 2.)

-5

 0

 5

 10

 0  0.05  0.1

st
re

ss
 [M

P
a]

w [mm]

Figure 28: Test frcfcm 4 CAF activation opening, loading is defined
in Fig. 24b; continuous aligned fibers, fiber activation opening 10 µm
(fibreActivationOpening 10.e-6).
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Figure 29: Test frcfcm 5 CAF crack spacing, geometry and loading from
Fig. 14 and Fig. 24b is modified: the horizontal dimension and the magnitude
of the prescribed displacement are doubled; continuous aligned fibers, fiber acti-
vation opening 10 µm (fibreActivationOpening 10.e-6), crack spacing 0.1 m
(crackSpacing 0.1).
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Figure 30: Test frcfcm 6 CAF fibre orientation snubbing, loading is de-
fined in Fig. 24b; continuous aligned fibers, fibre orientation at 60◦

fibreOrientationVector 3 0.5 0.866025403784439 0.; the thin blue line
shows the reference case when all fibers are horizontal (the snubbing does not
apply and the fiber quantity is higher).
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Figure 31: Test frcfcm 7 CAF fibre orientation no snubbing, loading is de-
fined in Fig. 24b; continuous aligned fibers, snubbing coefficient f = 0 (f 0.),
fibre orientation at 60◦ fibreOrientationVector 3 0.5 0.866025403784439

0.; the thin blue line shows the reference case when all fibers are horizontal (the
snubbing does not apply and the fiber quantity is higher).
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Figure 32: Test frcfcm 8 CAF activation opening smooth, loading is de-
fined in Fig. 24b; continuous aligned fibers, fiber activation opening 10 µm
(fibreActivationOpening 10.e-6), smooth transition from 5 µm to 15 µm
(dw0 5.e-6 dw1 5.e-6).
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8.3 ConcreteFCM in shear

This Section describes tests which aim at verification of the shear stiffness and
strength after the onset of cracking. These properties are tested on a single
quadrilateral plane-stress finite element, shown in the left part of Figure 33.
This element is subjected to uniform biaxial loading and shear which are defined
via displacements u2, u3, u4 and v3 and v4. The loading is divided into several
intervals. First, the element is stretched in the x-direction (u3 = v3 = v4 = 0 and
u2 = u4) causing first crack to appear. This deformation is then kept constant
throughout the rest of the analysis. Second, the shear deformation is increased
and then returned back to zero (u3 = u4 and v3 = v4 = 0). Next, the element
is stretched in the vertical direction (v3 = v4) and consequently is subjected to
another shear cycle. The loading program is shown in the right part of Figure
33.

The elastic properties are E = 20 GPa and ν = 0.2, the tensile strength
ft = 2 MPa, fracture energy Gf = 100 N/m, softening is linear (softType 2).

The geometry is the same in all tests. The loading is preserved in all sim-
ulations except for the tests on the shear strength where the magnitude of the
shear deformation cycles is increased.
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Figure 33: Geometry (left) and the loading program (right) for the shear tests.
The analysis runs in plane stress under a direct displacement control.

The output with a brief description is presented in the following figures. The
solid line usually corresponds to the analytical solution while the black points
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to the computed values. In most cases the test was is performed two times with
a subtle modification: either the shear stiffness is evaluated from the dominant
(wider crack) or from both cracks (multipleCrackShear keyword).
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Figure 34: Computed shear stress vs. shear strain for case when tensile
cracking does not lead to any decrease in shear stiffness (shearType 0); a
= dominant crack response, b = multiple cracks. Test files are labeled
concrete fcm shear none + dominant/multiple.
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Figure 35: Computed shear stress vs. shear strain for case when cracking leads
to a constant decrease in shear stiffness controlled by the shear retention factor
β = 0.2 (beta 0.2) activated by keyword (shearType 1); a = dominant crack
response, b = multiple cracks. Test files are labeled concrete fcm shear beta

+ dominant/multiple.
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Figure 36: Computed shear stress vs. shear strain for case when cracking leads
to a variable decrease in shear stiffness controlled by the shear factor coefficient
sF = 10 (sf 10.) activated by keyword (shearType 2); a = dominant crack
response, b = multiple cracks. Test files are labeled concrete fcm shear sf +
dominant/multiple.
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Figure 37: Computed shear stress vs. shear strain computed when crack-
ing leads to a user-defined decrease in shear stiffness controlled by variable
shear retention factor β(w) (beta w 6 0. 1.e-6 5.e-6 1.e-5 5.e-5 1.e-3

beta(w) 6 1. 1. 0.5 0.5 0.1 0.1) activated by keyword (shearType 3); a
= dominant crack response, b = multiple cracks. Test files are labeled
concrete fcm shear userbeta + dominant/multiple.
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Figure 38: Computed shear stress vs. shear strain for case when the
shear strength is limited, shear stiffness is reduced by a constant shear re-
tention factor β = 0.8 (beta 0.8), multiple cracks contribute to the over-
all shear stiffness, and shear strain loading is more pronounced than in
the previous cases; (a): shear strength limited by the tensile strength ft
(shearStrengthType 1), (b): shear strength follows the formula proposed by
Collins (41), (shearstrengthtype 2 fc 30 ag 0.01 lengthscale 1. Test
files is labeled concrete fcm shear strength.)
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Figure 39: Computed shear stress vs. shear strain for case when cracking leads
to a constant decrease in shear stiffness controlled by the shear retention factor
β = 0.5 (beta 0.5), more cracks contribute to the shear stiffness, and parallel
cracks with crack spacing 0.025 m develop (crackSpacing 0.025). Test files are
labeled concrete fcm shear crack spacing + dominant/multiple.
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8.4 FRCFCM in shear

This section shows the results of three verifying shear tests carried out on a single
finite element with a material model FRCFCM. The loading and geometry are
the same as described in the previous section.

The elastic properties of the matrix are E = 20 GPa and ν = 0.2, the
tensile strength ft = 2 MPa, fracture energy Gf = 100 N/m, softening is linear
(softType 2), shear stiffness is reduced by a constant shear retention factor β =
0.01, and the shear stiffness is affected by multiple cracking. In all three cases the
volume fraction of fibers is Vf = 0.02, fiber diameter Df = 40 µm, elastic (axial)
stiffness Ef = 20 GPa, elastic shear stiffness Gf = 1 GPa, bond strength between
the fiber and matrix τ0 = 1 MPa (constant), snubbing coefficient f = 0.7, and
fiber shear correction factor kfib = 0.9; in OOFEM syntax (fibers only): Vf 0.02

Df 0.04e-3 Ef 20000. Gfib 1000. tau 0 1. f 0.7 kfib 0.9 FSStype 0.
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Figure 40: Computed shear stress vs. shear strain for CAF with orientation
vector x : y : z = 10 : 1 : 0 (FiberType 0 fibreOrientationVector 3

10. 1. 0.). Test file is labeled frcfcm shear CAF beta multiple.
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Figure 41: Computed between shear stress and shear strain for SRF and pre-
defined crack spacing 25 mm (FiberType 2 crackSpacing 0.025). Test file is
labeled frcfcm shear SRF beta multiple.
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Figure 42: Computed relationship between shear stress and shear strain for SRF,
predefined crack spacing 25 mm and exponential fiber damage with γcrack = 0.5
(FiberType 2 crackSpacing 0.025 fDamType 2 gammaCrack 0.5). Test file
is labeled frcfcm shear SRF beta multiple damage.
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9 Benchmark

This section demonstrates the capabilities of the nonlocal variant of the FR-
CFCM model. The nonlocal model is computationally very expensive and re-
quires many iterations to reach an equilibrium. For this reason the benchmark
problem was chosen as simple as possible to show the prevailing trends in a
limited time. To illustrate the importance of the nonlocal concept, the results
obtained with the local version of the model are presented first.

The geometry of the computational model is shown in Figure 43. The length
is Lx = 25 mm and the maximum width bmax = 2 mm. The width is not
uniform, the thinnest cross-section is in the midspan where the width is reduced
to 1.5 mm. The function describing the width b(x) is a second-order parabola.
The specimen is symmetric about both its vertical and horizontal axes.

The computational model is composed by one row of uniformly spaced plane-
stress quadrilateral elements. To test the objectivity of the material model, the
finite element mesh has been generated with three different densities (but still
with one element per width). The model named as coarse is composed of 21
elements, model medium 41, and the finest mesh comprises 81 elements.

The loading of the model is defined by either direct load or direct displacement
control. The loading is applied at the rightmost two nodes while the (two) pinned
supports are at the left end.

Figure 43: Finite element mesh for uniaxial tension problem (fine mesh with 81
elements).

The material model corresponds to a strain hardening cementitious mate-
rial with 2% per volume of either continuous aligned or short (12 mm long)
random fibers. The fibers are embedded in a very brittle matrix with Gf = 5
N/m and ft = 2 MPa, the type of softening is exponential. The linear unload-
ing of fibers (to ∆w) leads to improved convergence, for this reason it is used
here instead of 4◦ parabola. A detailed syntax of the nonlocal model with CAF
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fibers the material syntax is frcfcmnl 1 d 0. talpha 0. E 20000. n 0.2 Gf

5.e-6 ft 2.0 softtype 1 sheartype 1 beta 0.01 Vf 0.02 Df 40.e-6 Lf 12.e-3

Ef 20000. Gfib 1000. tau 0 0.5 f 0.5 kfib 0.9 FSStype 0 fDamType 0 FiberType

0 ncracks 1 fibreActivationOpening 1.e-6 r 0.02 wft 4 dw0 1.e-7 dw1

1.e-7 M 1 fibreOrientationVector 2 1. 0.

The following table gives the idea of the computational cost (Intel i5 at
2.3 GHz). The price for the computation is given partially by a high num-
ber of brittle crack openings and by a large number of loading steps which is
necessary in order to generate the cracks one-by-one.

Path + file name Computational time
SRF local/coarse F local/neck.in 3 s
SRF local/medium F local/neck.in 7 s
SRF local/fine F local/neck.in 17 s
SRF local/coarse local local/neck.in 1 m 2 s
SRF nonlocal/coarse/neck.in 22 s
SRF nonlocal/medium/neck.in 1 m 11 s
SRF nonlocal/fine/neck.in 5 m 26 s
SRF nonlocal/coarse F/neck.in 6 s
CAF nonlocal/coarse/neck.in 30 s
CAF nonlocal/medium/neck.in 1 m 30 s
CAF nonlocal/fine/neck.in 5 m 20 s

9.1 Local FRCFCM

The first crack is formed in the middle of the specimen (in the weakest ele-
ment) when the normal stress exceeds the tensile strength. Under the direct
displacement control, depending on the balance of the elastic energy accumu-
lated in the specimen and the fracture energy of the matrix, the crack is opening
either suddenly or slowly. As the crack is opening the rest of the specimen is
unloading. If the traction-separation law is with hardening and the loading con-
tinues, the stress exceeds the tensile strength in the second weakest link this
scenario is repeated until the whole specimen is saturated with cracks (CAF) or
the traction-separation law starts softening in the crack with the widest opening
(SAF or SRF).

The crack growth is for the coarse mesh and the local FRCFCM material
model with short random fibers shown in Figure 44. The displacements in this
figure are exaggerated. Interestingly, the difference in the crack opening is very
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small, this is due to very fast growth of the fiber bridging stress once the crack
opening exceeds ∆w. The picture at the bottom is just before the state when the
stress in the middle element exceeds the maximum stress of the material, σ(w∗).

Figure 44: Computed crack widths displayed on a deformed coarse finite element
mesh (the displacements are magnified and the scale is in meters); cracks start
developing from the center and propagate towards the thicker sections of the
model.

The load-displacement diagram in Figure 45 shows nice agreement of the
displacement-driven and the force-driven analysis. Naturally, in the force-driven
analysis one cannot get the sudden drops in force associated with brittle crack
opening. It is worth mentioning that with more existing cracks these drops tends
to decrease as the overall stiffness is substantially reduced. The height of these
drops also depends on the exponent M in the unloading-reloading law but the
influence is not significant. At the displacement ≈ 0.84 mm the crack opening in
the weakest element reaches w∗ and the force crack starts opening at decreasing
stress.

However, if the mesh density was doubled (in the axial direction), the cracks
would have been initiated in twice as much elements and the overall deformation
would have increased (almost) twofold (because the elastic deformation is neg-
ligible compared to the cracking deformation). Crack propagation on 4× finer
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Figure 45: Load-displacement diagram obtained with the local FRCFCM model
with short random fibers on a coarse mesh under direct displacement and force
control.

mesh is shown in Figure 46 and the rate of the overall deformation growth in
Figure 47. Naturally, such behavior is unacceptable. The local version of the
FRCFCM material model must not be used for materials with hardening.
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Figure 46: Computed crack widths displayed on a deformed fine finite element
mesh (the displacements are magnified and the scale is in meters); cracks start
developing from the center and propagate towards the thicker sections of the
model. The individual time steps correspond to the three figures in Fig. 44; the
crack openings as well as the length of the damaged zone are almost identical
but the overall axial displacement is here four times higher.
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Figure 47: Load-displacement diagram obtained with the local FRCFCM models
with short random fibers; analysis is run under direct force control. Due to the
large displacements the elastic loading path is not apparent.
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9.2 Nonlocal FRCFCM

The situation drastically changes if the local version of the FRCFM material
model is replaced by its nonlocal extension. This is shown here for the contin-
uous aligned fibers. After the formation of the first crack, the bridging stress
in the fibers leads to a field of nonlocal fiber stress which decreases with the dis-
tance from the crack until it reaches zero for distance bigger than a (98), see the
first figure in Figure 49 and 50. This nonlocal stress is then used in the condition
for the formation of a subsequent crack (104). In this case, the stress-strength
condition is not violated in the finite elements right next to the element with
the first crack but in the second row. This is repeated until the cracks saturate
the specimen and the load-displacement diagram is globally hardening without
further kinks, see Figure 48. This diagram also indicates that the response is
no longer dependent on the fineness of the finite element mesh; (almost) the
identical curve is obtained for all three mesh densities (coarse, medium, fine) for
loading displacement < 0.08 mm, afterwards some differences appear but the
agreement is still good.

For the comparison of the crack distribution, their widths, and the nonlocal
stress computed on a coarse and fine mesh, see Figures 49, 50, 51, and 52.
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Figure 48: Load-displacement diagram obtained with the nonlocal FRCFCM
models containing continuous aligned fibers; analysis was run under direct dis-
placement control and was performed on three different finite element meshes.

In the case of the short random fibers only three cracks develop: the central
and then one on each side. The distance between the cracks is bigger owing to
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Figure 49: Computed crack widths displayed on a deformed coarse finite element
mesh (the displacements are magnified and the scale is in meters); cracks start
developing from the center and propagate towards the thicker sections of the
model but the damaged elements do not neighbor. The distance is determined
entirely by the material properties and the fiber class (in this case CAF).

a different stress transfer from fibers to matrix. The comparison of the global
response is for the three mesh densities and direct displacement control and
for the coarse mesh and direct force control shown in Figure 54. The crack
distribution and the nonlocal stress is for the coarse mesh shown in Figure 49.

What is important and interesting is the comparison of the numerically com-
puted crack-spacing with the values obtained using the analytically derived ex-
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Figure 50: Nonlocal fiber stress in uncracked elements (expressed per unit are of
the composite) displayed on a deformed coarse finite element mesh (the scale is
in MPa); the time steps correspond to those from Fig. 49.

pressions presented earlier in equations (95)–(97). According to those formu-
las and the material definition of the benchmark problem, the crack spacing
is for the continuous aligned fibers xCAF = 0.196 mm and for the short ran-
dom fibers xSRF = 3.83 mm. In the numerical simulations these distances are
xCAF,OOFEM = 2.16 mm and xSRF,OOFEM = 4.32 mm. (These distances were
measured on the fine finite element mesh between the centers of the cracked ele-
ments.) It must be noted that the analytically derived expression hold for ideally
brittle matrix. The error is around 10% and its source is the non-uniform width
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Figure 51: Computed crack widths displayed on a deformed fine finite element
mesh (the displacements are magnified and the scale is in meters); The distance
between cracks as well as the opening is very similar to those from Figure 49.

of the specimen.
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Figure 52: Nonlocal fiber stress in uncracked elements (expressed per unit are of
the composite) displayed on a deformed fine finite element mesh (the scale is in
MPa); the time steps correspond to those from Fig. 50.
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Figure 53: Load-displacement diagram obtained with the nonlocal FRCFCM
models containing short random fibers; analysis was run under direct displace-
ment and force control and was performed on three different finite element
meshes. The figure contains three solid curves which almost impossible to dis-
tinguish.

Figure 54: Crack width and nonlocal fiber stress in uncracked elements (ex-
pressed per unit are of the composite) computed on a coarse finite element mesh.
The results correspond to the loading displacement 0.15 mm.
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10 Example: 3-point bending

The nonlocal model for strain hardening cementitious composites is a vital tool
not only in specimens which are subjected to almost uniform loading (uniaxial
tension, four-point bending), but also when the loading is highly concentrated
as demonstrated in this example of eccentric three-point bending. The deformed
geometry of the examined specimen is shown in Figure 55. The distance between
the middle of the supports is 60 mm and the height is 20 mm. The loading plate
is placed at one third of the span. The specimens are labeled according to the
number of finite elements per height; Figure 55 shows the coarsest mesh with
10 rows of finite elements. The material uses the definition from the benchmark
presented in the previous Section; the fiber class is SRF.

Figure 55: Deformed geometry of the examined beam subjected to three-point
bending.

The response of the numerical models with the local material law is for the
initiation phase shown in Figure 56. The behavior is indeed very ductile, a
large number of cracks is formed at the bottom surface under the loading plate.
Interestingly, the very first three cracks form similarly – independently whether
the local or nonlocal model is used. (The first crack forms under the plate, the
second one near the midspan and the third one closer to the left support.) The
reason for this is that these cracks are far from each other and therefore do not
influence each other by the nonlocal fiber stress. Here, using the local model
the cracks are forming in clusters close to the original position of the first three
cracks (see Figures 60 and 61), later these clusters merge into a large damaged
zone. The collapse occurs when the opening of the crack under the right tip of
the loading plate exceeds w∗. The behavior confirms the previous observations:
the results are not objective, a finer mesh causes more ductile behavior.
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Figure 56: Initiation part of the load-displacement diagram obtained with the
local FRCFCM model containing short random fibers; analyses were run under
direct displacement control and were performed on regular finite element meshes
with different nominal element size. The number in the legend corresponds to
the number of elements per height.

On contrary to the local model, the nonlocal extension provides very con-
sistent results, see Figure 59. The global response is stiffer and the differences
between the finest and coarsest model are negligible. However, this is true only
for the initiation phase before the global peak. More thorough laws for the
mutual crack interaction are necessary to get comparable results also for the
postpeak. The crack patterns are shown for the vertical displacement 0.1 and
0.2 mm in Figures 60 and 61. The crack pattern is indeed more realistic than
for the local model.
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Figure 57: Distribution of crack width computed with the local FRCFCM and
SRF corresponding to vertical displacement of the loading plate 0.1 mm in models
with 10, 20 and 30 rows of finite elements. Elements with crack opening w < 2 µm
are filtered out.
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Figure 58: Distribution of crack width computed with the local FRCFCM and
SRF corresponding to vertical displacement of the loading plate 0.2 mm in models
with 10, 20 and 30 rows of finite elements. Elements with crack opening w < 2 µm
are filtered out.
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Figure 59: Initiation part of the load-displacement diagram obtained with the
nonlocal FRCFCM model containing short random fibers; analyses were run
under direct displacement control and were performed on regular finite element
meshes with different nominal element size. The number in the legend corre-
sponds to the number of elements per height.
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Figure 60: Distribution of crack width computed with the nonlocal FRCFCM
and SRF corresponding to the vertical displacement of the loading plate 0.1 mm
in models with 10, 20 and 30 rows of finite elements. Elements with crack opening
w < 2 µm are filtered out.
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Figure 61: Distribution of crack width computed with the nonlocal FRCFCM
and SRF corresponding to the vertical displacement of the loading plate 0.2 mm
in models with 10, 20 and 30 rows of finite elements. Elements with crack opening
w < 2 µm are filtered out.
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plementation of high performance fibre reinforced cementitious composite
material model in ATENA, report VI-2016-01-28, grant number TAČR
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