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Abstract

Development of Internet-of-things (IoT) technologies opened the way for remote
assessment of structural health. Such an assessment can be accomplished by mon-
itoring relative displacements of structural elements since the imminent failure of
civil engineering structures usually manifests through a loss of stiffness and hence
excessive displacements under static loading or change in vibration frequencies
due to dynamic excitation.

With these facts in mind, an open-source tool for real-time measurement of relative
displacements based on image registration was developed. The use of upsampled
matrix-multiplication discrete Fourier transform and measurement limited to pre-
defined points of interest by virtual extensometers allowed high sampling frequen-
cies with subpixel accuracy. The accuracy of the system with respect to a physical
length-scale was assessed, and the software was successfully verified through ex-
perimental testing in a laboratory.

Besides the proof-of-concept laboratory testing using delicate equipment, the de-
veloped software was accommodated in portable hardware to fully benefit from the
lightweight algorithms. Existence of such a measurement system enabled remote
monitoring of displacements and deformations outdoors. Two types of hardware
solutions were tested: (i) intended for real-time measurement with a collection of
data at high sampling rates and (ii) reliability-focused hardware for off-grid long-
term measurements. Both solutions were tested outdoors; the first for measurement
of bridge deflections due to traffic loading and the latter for monitoring of a rock
massif stability.

Besides real-time measurements, the algorithms were also employed for measure-
ments in an off-line mode. Here, the computationally efficient algorithms allowed
processing of larger sequences of images recorded, e.g., using high-speed cameras.
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Abstrakt

Vývoj technologií internetu věcí (IoT) otevřel cestu pro vzdálené hodnocení stat-
ického stavu konstrukcí. Takové posouzení může být provedeno monitorováním
relativních posunů konstrukčních prvků, protože bezprostřední selhání stavebních
konstrukcí se obvykle projevuje ztrátou tuhosti a tím i nadměrnými deformacemi
při statickém namáhání nebo změnou vlastních frekvencí v důsledku dynamického
buzení.

Za tímto účelem byl vyvinut open-source nástroj pro měření relativních posunů v
reálném čase na základě registrace obrazu. Použití diskrétní Fourierovy transfor-
mace a převzorkovanou maticí obrazu, omezené na předem vybrané body na kon-
strukci umožňuje vysoké vzorkovací frekvence s přesností menší, než jeden pixel.
V rámci disertační práce byla posouzena přesnost systému s ohledem na fyzické
měřítko a software byl úspěšně ověřen experimentálním testováním v laboratoři.

Kromě laboratorního testování k ověření funkčnosti prototypu pomocí laboratorního
vybavení byl navržen přenosný hardware plně benefitující z jednoduchosti použí-
vaných algoritmů. Tento hardware byl testován v reálných podmínkách, přičemž
byla ověřována funkčnost dvou řešení: (i) zařízení určené pro měření v reálném
čase se shromažd’ováním dat při vysokých frekvencích vzorkování a (ii) hardware
zaměřený na spolehlivost pro dlouhodobá měření mimo dosah elektrického napá-
jení. Obě řešení byla testována ve venkovním prostředí; první pro měření průhybů
mostů v důsledku dopravního zatížení a druhý pro monitorování stability horni-
nového masivu.

Kromě měření v reálném čase byly algoritmy použity také pro měření v off-line
režimu. Výpočtově efektivní algoritmy zde umožňovaly zpracování velkých obra-
zových sekvencí, např. z měření pomocí vysokorychlostních kamer.
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Goals

The main objective of the presented research was to develop a solution capable of optical real-
time measurement of displacements/deformations at high sampling rates. To achieve these
goals, it was necessary to divide the research into the following sub-goals:

• Review state-of-the-art technologies and algorithms and find a niche in the area of real-
time optical measurements, Chapters 1 and 2,

• Develop and validate software tools for computationally efficient calculation of displace-
ment and deformations, suitable for real-time measurement, Chapter 3,

• Find suitable criteria for the assessment of stochastic patters for DIC measurements,
Chapter 4,

• Design suitable hardware for autonomous monitoring of structural movements/deformations
and data transfer, Chapter 5,

• Present practical use and results of the developed solutions, Chapter 6 and 7.





Chapter 1

Introduction and state of art

Recent failures of several bridges1,2 have led to a discussion about the evaluation of safety and
the need for a continuous assessment of structural health. Displacements at critical points under
a certain loading condition provide crucial information about deterioration and their monitoring
can alert people in case of suspicious behavior [1, 2]. The validity of this statement is not lim-
ited to bridges; climate changes and frequent extreme weather episodes in some geographical
locations may cause problems not only on building or civil engineering structures [3] but also
with the stability of slopes [4, 5]. In addition, monitoring of displacement fields on existent
structures can be very useful in case of any human interventions, such as excavation works, in
the neighborhood.

The imminent failure of a load-bearing structure can be manifested through a loss of stiff-
ness and hence excessive displacements under static loading [6–8] or change in vibration fre-
quencies due to dynamic excitation [9]. However, measuring these displacements or frequen-
cies is not easy, since for example, most bridges overpass a river or sea where installation of
conventional measurement instrumentation is extremely inconvenient or nearly impossible.

These issues are even more pronounced in the case of long-term measurements, e.g., for
continuous health monitoring. Long-term monitoring of structures requires a reliable and cheap
solution with easily accessible results on-line. These requirements can be fulfilled by employ-
ing optical measurements with cameras connected to a computer capable of sending data on a
cloud server. Despite relatively straightforward principles, such devices are not commonly em-
ployed outdoors and even commercial solutions are usually restricted to a laboratory use. Be-
fore diving into the developments of such a measurement solution, an overview of techniques
and principles adopted in the measurement of displacements and deformations is provided next.

1.1 Contact measurement

Contact measurement techniques have been traditionally exploited in structural assessment, but
their use is often challenging in terms of measurement accuracy. Moreover, their installation is

1https://www.bbc.com/news/world-europe-45241842
2https://www.dw.com/en/prague-bridge-collapse-leaves-4-injured/a-41629175
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often laborious and requires a sufficiently flat surface allowing the use of adhesives or drilling.
Yet, in some cases, their superior accuracy to other measurement techniques, scalability, and
the possibility to embed devices for contact-based measurement of deformations makes contact
measurement indispensable.

1.1.1 Strain gauges

Strain gauges or linear variable differential transformers (LVDTs) [10] are the most com-
monly used instruments for contact measurement of strains and displacements. A principle
of strain gauge measurement was first described by Edward E. Simmons and Arthur C. Ruge
in 1938 [11]. The principle is based on detecting changes in electric resistance of a gauge grid
due to its deformation (elongation). The most widely used metallic strain gauge consists of
a fine wire (thickness approximately 0.025 mm) or metallic foil arranged in a regular pattern.
Strain gauges must be connected to an electric circuit and usually employ three additional re-
sistors to form a Wheatstone bridge circuit (Figure 1.1). This pattern is designed in such a way
to maximize the amount of a metal to be subjected to elongation/shortening when the gauge
is deformed. The cross-sectional area of a grid is minimized to reduce the impacts of shear
strain and Poisson ratio. Strain gauges are reinforced by a foil to which metal grids are bonded
using adhesives. This backing foil, called a carrier, must be attached directly to a test specimen
surface. Therefore, strain experienced by the test specimen is transferred directly to the strain
gauge, which responses with a linear change in electrical resistance [12]. This resistance is cal-
culated based on recorded voltage. Therefore, proper attachment of a strain gauge to a surface
of tested structures if of the greatest importance and the interface is usually the weakest link in
the system [13].

V

R1 R2

R3

Strain gauge (Rx)

Measured strain direction

VDC

Figure 1.1: Scheme of a quarter-bridge strain gauge basic circuit, where volts direct current
(VDC) represents a source of direct current, R1, R2, R3, and Rx (the strain gauge) represent
resistors, and V is a voltmeter.

When selecting a suitable strain gauge for a given application, it is necessary to consider
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not only the characteristics of the sensor, but also its stability and temperature sensitivity. Since
materials used in strain gauges are sensitive to temperature changes, long-term measurements
require employing additional unloaded strain gauge for compensation. There are numerous
drawbacks associated with the use of strain gauges that must be kept in mind. It was reported
by Koval and Boiko [14] that strain-gauges that can suffer from fatigue. Moreover, imperfect
attachment to the measured surface can significantly influence the measurement accuracy [15,
16] and the additional stiffness can influence the behavior of compliant specimens [17].

1.1.2 LVDTs

Unlike strain gauges capable of measuring local deformations, linear variable differential trans-
formers (LVDTs) can be used for the measurement of relative displacements at discrete points.
Their measurement range is limited only by the production technology and, in theory, it is fully
scalable. The advantage of using LVDT displacement transducers is that the moving core does
not have any contact with other electrical components of the assembly and thus it offers high
reliability and long life. LVDTs are temperature independent, but the entire sensor must be
shielded to prevent misreadings due to sensitivity to magnetic fields.

In the simplest form, LVDT consists of a cylindrical array of a primary and secondary
coils with a separate cylindrical core passing through a center of the sensor body (Figure 1.2).
The primary coil is powered by a constant amplitude of alternating current (AC) supply at a
frequency of 1 kHz to 10 kHz. This produces an alternating magnetic field in the center of
the transducer which induces a signal into the secondary coils. The amplitude of the magnetic
field depends on the position of the movable core that is attached to the measured surface. The
winding of the coils is such that the signal output has a linear relationship with the movement of
the core. The secondary output signal can be then processed by a phase-sensitive demodulator
which is switched at the same frequency as the primary current supply. The final output, after
rectification and filtering, generates a direct current proportional to the core movement and also
indicates its direction, positive or negative from the central zero point [18].

1.2 Non-contact measurement

Non-contact measurement methods can be generally categorized on those based on laser tech-
nology [19], radars [20], GPS [21], or video/digital image processing [22–26]. In some appli-
cations, it is advantageous to combine these technologies in order to increase the performance
and reliability of measurement [27]. Unlike conventional contact-based methods, non-contact
techniques are capable of capturing even the most complex deformation until the ultimate fail-
ure of the tested specimen/structure [28, 29].

Even though radar-based technology has been successfully adopted for structural health
monitoring [20, 30, 31] as well as less accurate GPS tracking [32–34], laser sensors are dis-
cussed here for their similarity to optical measurements, being the subject of this thesis. These
sensors exploit laser light propagation and reflection from a measured object; the distance of
a monitored surface changes an angle of a reflected laser beam, which is received on a sen-
sor [35] (Figure 1.3). It is obvious that the measurement accuracy can be negatively affected
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V1

V2

Vx

Measured strain direction

Secondary coil

Secondary coil

Primary coil

C
or

e

VAC

Figure 1.2: Scheme of an LVDT displacement sensor basic circuit, where volts alternating
current (VAC) represents a source of alternating current and V1 and V2 are voltmeters; the
difference in voltage on these voltmeters is proportional to a measured displacement.

and the installation of such a measurement line requires a seasoned operator. On the other hand,
if conducted properly, the measurements are very accurate and the use of programmable logic
controllers (PLCs) allows to compensate temperature changes [36].

The reflected laser beam is usually captured using a charge-coupled device (CCD) or a
complementary metal-oxide-semiconductor (CMOS). These are light-sensitive integrated cir-
cuits that store and display image data in such a way that each pixel within the image is con-
verted into an electrical charge. The charge is proportional to the light intensity and CCD/CMOS
sensors are capable of detecting a peak of the light intensity distribution on a sensor pixel array.
In addition to observing object translations, time-of-flight technology employing pulsing trans-
mitter diode and a sensitive laser energy detector allow calculating the distance of a measured
surface from the sensor [37].

Besides digital image correlation (DIC) thoroughly described in the following text, various
non-contact optical measurement methods based on interferometry exist: holography interfer-
ometry [38], speckle interferometry [39], and moiré interferometry [40]. These methods allow
for computing displacement fields, but with the development of DIC they lose their signifi-
cance [41]. The same applies for the non-interferometric full-field grid method [42].

1.3 Digital image correlation

DIC technique enables evaluating kinematic fields from a series of digital images. The devel-
opment of DIC benefited from the rapid development of digital cameras and computers in the
last decade of 20th century. DIC principles were first proposed by Yamaguchi [43] and Peters
and Ranson [44]. Since then, the method has been used in a wide range of applications, from
biomechanics [45, 46] to structural mechanics [47, 48] or dynamics [49], and across multiple
scales, from microscopic observations [50, 51] to large-scale structures, such as dams [52] or
bridges [53].
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Diode laser

CCD array

Different object positions

φ

L∆L

Transmitting lens

Receiving lens

∆l

Figure 1.3: Principle of laser-based displacement measurement; ∆L is a translation distance
traveled by an observed surface originally positioned at a distance L, φ is a reflection angle,
and ∆l is the change of light intensity distribution peak on a CCD array.

DIC became indispensable when monitoring and analyzing the development of kinematic
fields. Besides a pure experimental assessment, knowledge of displacement and deformation
fields allows us to identify global and local material parameters, validate material models, and
verify numerical tools [54–56]. Unlike contact measurement techniques or laser-based mea-
surements, DIC can capture strain localization on an observed surface, independent of a direc-
tion of principal strains [41, 57].

To ensure an accurate and reliable correlation of subsets within images, a homogeneous
random pattern must be applied to the observed surface to provide gray-level variations if not
present naturally [58]. The evaluation of a subset displacements and deformations is accom-
plished by minimizing the correlation function [59] using an optimization algorithm [60–63].
The optimization becomes more demanding with an increasing size of subsets, but subsets
that are too small do not contain a sufficient number of features to track, resulting in poor
correlation results [64]. Therefore, a resolution of calculated displacement/deformation fields
and DIC precision are limited by image resolution and density and sharpness of the observed
pattern. Besides bad settings of the subset size, lens distortions, or changes in camera temper-
ature, unwanted camera/sample motion can introduce the most significant inaccuracies in DIC
measurements [65].

Unlike 2D DIC, based on matching subsets within images to a reference one, stereo (3D)
DIC operates with a series of image pairs. The images of an observed surface must be acquired
by a set of a synchronized couple of cameras (or a binocular camera) and each pair of images
is correlated with a reference one. 3D surface geometry is reconstructed from each couple
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of images from intrinsic and extrinsic parameters using triangulation. Intrinsic parameters
describe characteristics of a camera, such as an intersection between its optical axis and sensor
plane, camera lens distortions, and focal length. The extrinsic parameters describe a relative
position of lenses [66]. The correlation and 3D surface reconstruction provide positions of
subsets within 3D space, from which 3D displacement vectors are calculated [67, 68]. Due to
the impact of camera position and image distortions on results of stereo DIC, the system must
be calibrated for each measurement [67, 68]. Moreover, the computational costs associated
with 3D surface reconstruction make stereo DIC much more demanding than 2D DIC.

1.3.1 DIC principles

When dealing with 2D DIC, the algorithms can be divided into two categories: (i) local (subset-
based) DIC [59, 69–72] and (ii) global DIC, which employs similar principles as finite element
(FE) calculations and therefore also referred to as FE-based DIC [73–78]. In the local DIC, each
subset is processed at a time independently without enforced continuity of displacement fields.
In global DIC, a region of interest is usually discretized into elements connected by nodes.
Similarly to the FE method, the displacements of all elements are evaluated simultaneously
to ensure continuity of displacement fields. Wang and Pan [79] conducted a comprehensive
study on the performance of local and global DIC. They reported higher displacement precision
and computational efficiency of local formulations. The global DIC appears advantageous
for comparisons between numerical models and experimental observations. Since comparison
with computational models is not discussed in this thesis and the emphasis was put on the
development of computationally efficient algorithms for local evaluation of displacements, only
the principles of local DIC are presented further.

The main idea of DIC is to find a correspondence between material points, usually posi-
tioned on a regular grid, in an undeformed (reference) and a deformed (current) images. This
unique correspondence cannot be found for a single pixel and therefore a correspondence of
a group of pixels (a subset) located around a material point is sought. The seeking process is
accomplished via finding a maximum of a correlation matrix between a current subset and a
reference image. This matching procedure yields a position of the current subset within the ref-
erence image and the initial displacement with an integer-pixel accuracy is obtained. Specific
algorithms to estimate displacement with a subpixel accuracy, such as non-linear optimiza-
tion or curve-fitting [80], have to be employed next. After repeating this procedure for each
subset and time step, the evolution of the displacement field is obtained. Due to the sensi-
tivity of derivatives to local disturbances of differentiated fields, most DIC software employ
least-squares fitting, where displacement distributions within the strain calculation window are
approximated by a linear plane [62].

An example of a subset transformation is provided in Figure 1.4. Here, local coordinates
(i, j) are established for points denoted as 1, 2, ..., 7 as follows

S = [(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)] . (1.1)

The translation and deformation of the reference subset points to the current shape is typi-
cally expressed as a linear transformation using a first-order displacement mapping function in
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x

y

Reference image
x

y

Current image

1

2

3

4

5

6

7 i

j

Figure 1.4: Coordinates of subset points represented by the red crosses, located within a refer-
ence and a current image.

the following form:

x̃cur,i = xref,i + urc +
∂u

∂xrc
(xref,i − xref,c) +

∂u

∂yrc
(yref,j − yref,c),

ỹcur,j = yref,j + vrc +
∂v

∂xrc
(xref,i − xref,c) +

∂v

∂yrc
(yref,j − yref,c),

(1.2)

where (i, j) ∈ S, xref,i and yref,j are the x and y coordinates of an initial reference subset point,
xref,c and yref,c are the x and y coordinates of the center of the initial reference subset, x̃cur,i and
ỹcur,j are the x and y coordinates of a final current subset point and ∂u/∂xrc, ∂u/∂yrc, ∂v/∂xrc,
∂v/∂yrc are displacement gradient components, and u, v are translations of the subset center in
the x and y directions, respectively. The "rc" subscript indicates that the coordinate system is
transformed from reference to current.

A general form of the deformation array can be written as

p =

[
u v

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

]T
(1.3)

with geometrical meaning of individual entries illustrated in Figure 1.5. Any linear combination
of the six components in p can be described by a warp function w, allowing for rewriting
Equation (1.2) in a matrix form:

ξref,c + w(4ξref ,prc) =


xTref,c

yTref,c

1

+


1 +

∂u

∂xrc

∂u

∂yrc
urc

∂v

∂xrc
1 +

∂v

∂yrc
vrc

0 0 1




∆xTref

∆yTref

1

 , (1.4)

where ξ is an augmented vector which contains the x and y coordinates of subset points, ∆x
and ∆y are the distances between the subset points and the center of the subset, and w is a warp
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function. It is necessary to allow deformation of the reference subset as follows [81]

x̃ref,i = xref,i + urr +
∂u

∂xrr
(xref,i − xref,c) +

∂u

∂yrr
(yref,j − yref,c),

ỹref,j = yref,j + vrr +
∂v

∂xrr
(xref,i − xref,c) +

∂v

∂yrr
(yref,j − yref,c),

(1.5)

where x̃ref,i and ỹref,i are the x and y coordinates of the final reference subset point. The
subscript denotation "rr" is meant to represent the transformation from one reference coordinate
system to another.

x

y

x

y

u

x

y

v

x

y
du
dx

x

y

x

y

x

y
dv
dy

du
dy

dv
dx

w

Figure 1.5: Linear transformations for subset coordinates, reproduced from [82].

The aim of DIC algorithms is to find optimal prc when prr = 0 such that the evaluated
coordinates x̃ref,i and ỹref,j match the coordinates x̃cur,i and ỹcur,j .

There have been numerous similarity criteria developed for comparing gray-scale intensity
distributions within a reference and current subsets, classified into categories according to their
mathematical definitions: cross-correlation (CC), a sum of absolute differences (SAD), a sum
of squared differences (SSD), and a parametric sum of squared differences (PSSD) [63, 72, 83–
86]. For example, the most popular open-source software Ncorr [87] exploits normalized cross-
correlation (NCC) metric for the initial guess when finding integer-pixel translations u and v,
defined as

CCC =

∑
(i,j)∈S(f(x̃ref,i, ỹref,j)− fm)(g(x̃cur,i, ỹcur,j)− gm)√∑

(i,j)∈S [f(x̃ref,i, ỹref,j)− fm]2
∑

(i,j)∈S [g(x̃cur,i, ỹcur,j)− gm]2
, (1.6)

where f and g represent gray-scale values and fm and gm are the mean gray scale values of the
reference and current subset, defined as

fm =

∑
(i,j)∈S f(x̃ref,i, ỹref,j)

n(S)
,

gm =

∑
(i,j)∈S g(x̃cur,i, ỹcur,j)

n(S)
,

, (1.7)

where n(S) is the number of elements in S. Normalization of the cross-correlation in Equa-
tion (1.6) is necessary from practical reasons, since illumination can change during an experi-
ment and the histogram of gray-scale values can shift towards brighter or darker shades.

In the next step, instead of maximizing CCC defined in Equation (1.6), it is advantageous
to optimize the subsets least-squares correlation CLS introduced in Equation (1.8) to reach
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CLS(prc) = minimum [88].

CLS =
∑

(i,j)∈S

 f(x̃ref,i, ỹref,j)− fm√∑
(i,j)∈S [f(x̃ref,i, ỹref,j)− fm]2

− g(x̃cur,i, ỹcur,j)− gm√∑
(i,j)∈S [g(x̃cur,i, ỹcur,j)− gm]2

2

.

(1.8)

Optimal prc can be found using, e.g., the inverse compositional Gauss-Newton (IC-GN)
method as the nonlinear optimizer [72, 89]. Full description of the optimization is beyond the
scope of this work.

The Green-Lagrangian strains are obtained via displacement gradients as

εxx =
1

2

(
2
∂u

∂x
+

(
∂u

∂x

)2

+

(
∂v

∂x

)2
)
,

εxy =
1

2

(
∂u

∂y
+
∂v

∂x
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

)
,

εyy =
1

2

(
2
∂u

∂y
+

(
∂u

∂y

)2

+

(
∂v

∂y

)2
)
.

(1.9)

Calculation of strain fields by a numerical differentiation is usually accomplished by least-
squares fitting of a plane (Equations (1.10) and (1.11)) to a strain averaging window within a
displacement field to find the plane parameters used for calculating strains according to Equa-
tion (1.9). This approach renders the obtained strain field noiseless if the averaging window is
large enough; on the other hand, if the averaging window is too large, strain localizations can
be smoothed.

uplane(x, y) = au,plane +

(
∂u

∂xplane

)
x+

(
∂u

∂yplane

)
y (1.10)

vplane(x, y) = av,plane +

(
∂v

∂xplane

)
x+

(
∂v

∂yplane

)
y (1.11)

1.3.2 Real-time DIC

Real-time displacement and strain measurement using DIC have been tackled by a handful
of authors [90–92]. Despite significantly improved efficiency of DIC provided by optimized
minima-searching strategy, the reported real-time tracking rate is usually below 20 Hz. For
instance, when controlling actuators during a destructive test, the evaluated region had to be
limited to 15 × 15 pixel to enable data sampling around 10–20 Hz [93, 94].

Recently published research by Wu et al. [95] introduced a new coherent approach to DIC
real-time processing, consisting of an efficient integer-pixel search scheme with a combination
of an improved particle swarm optimization [96] algorithm and the block-based gradient de-
scent search algorithm [97, 98]. Incorporated with the inverse compositional IC-GN algorithm
for sub-pixel registration and parallel computing, a real-time DIC algorithm for a displacement
or strain measurement during the dynamic tests could be evaluated in real-time at a rate of up
to 60 Hz.
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Commercial packages such as VIC-2D offer real-time DIC measurements at 11 MPx reso-
lution images with up to 5 Hz frame rate when gathering virtual extensometer data (correspond-
ing to the calculation of displacements at two discreet locations). Such a system is offered by
Correlated Solutions3 as a complete bundle, including both software and hardware (CCD cam-
era, tripod, and illumination). The costs of basic kit (VIC-2D SR) starts at EUR 12,0004.

3http://correlatedsolutions.com/
4As of date December 1, 2019.

http://correlatedsolutions.com/


Chapter 2

Digital image acquisition

The development of high sensitivity CCD (charge-coupled device) and CMOS (complementary
metal-oxide-semiconductor) matrix sensors used by most modern digital cameras contributed
to the rapidly increasing popularity of DIC. These sensors convert light into electrons and
capture the entire image frame at once, produce low digital noise, provide high luminance
range, and enable to achieve relatively high resolutions [99]. On the other hand, there are a few
drawbacks associated with their use, such as relatively high cost, increased power consumption,
and quite complex construction of cameras.

One could argue that modern cell phones are capable of accommodating CMOS sensors
without compromising phone construction and offer high-quality photos. But the CCD/CMOS
sensor size matters in case of very delicate DIC measurements, since it determines how much
light it uses to create an image. That is why large DSLR (digital single-lens reflect) cameras
with sensors (see Figure 2.1) reaching full-frame size (equivalent to traditional 36×24 mm cam-
era film window size) offer images with a high dynamic range, less noise, and improved qual-
ity when acquired in low-light conditions without artificial enhancements in a post-processing
software.

2.1 Aperture

In digital photography, the term aperture is used for a lens diaphragm opening. It regulates the
amount of light passing onto the sensor inside a camera when a shutter curtain opens during an
exposure process. The aperture number, sometimes called f-number, does not only regulate the
amount of light that passes through lens, but also affects the depth of field. Since 2D DIC is
tailored for monitoring of planar surfaces, the f-number must be set to capture only projections
resulting from the unevenness of a measured surface. F-number should be set with respect to
the settings of shutter speed and ISO number in order to achieve proper exposure of a monitored
surface.
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35 mm "full frame"

APS-H (Canon)

1" (Sony, Nikon)

APS-C (Nikon DX)

APS-C (Canon)

2/3" (Fujifilm X20)

1/3.6" (iPhone 8)

1/1.8" (Ximea MC031MG-SY)

Figure 2.1: Comparative dimensions of sensor sizes.

2.2 Shutter speed

Shutter speed represents another main ingredient required to form a right exposure; it is the
opening and closing time of a shutter curtain. Shutter speed has to be chosen carefully with
respect to light conditions and setting of f-number in order to obtain blur-free images, needless
to mention that sharpness of images is crucial for DIC analysis. In the case of quasi-static tests
performed with satisfactory lighting conditions, it is recommended to have the shutter speed set
to about 1/10 s. Destructive tests with an abrupt failure require extremely short shutter speeds
to avoid fuzzy images, therefore increasing demands on illumination.

2.3 ISO number

In very basic terms, ISO represents a level of sensitivity to light. The lower the ISO number,
the less sensitive the sensor is. ISO number needs to be set as low as possible for DIC analysis
since low ISO numbers produce the smallest amount of noise that makes images appear grainy.
From a technical point of view, noise in images represents a visual manifestation of a low
signal-to-noise ratio, which can be defined as the ratio of the power of a signal (meaningful
information) and power of background noise. All modern cameras equipped with CCD/CMOS
sensors have their base ISO number equal to 100. The impact of the ISO number on the quality
of images is presented in Figure 2.2.
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Figure 2.2: Comparison of a sharp image taken with setting of ISO number to 100 (left) and an
image with noise due to setting ISO to 1600 (right).

Cameras with smaller sensors, such as cell phones or compact cameras having thumbnail-
sized sensors can reach unacceptable noise levels even at ISO 400.

2.4 Lenses

The design and quality of optical lenses play a crucial role in providing high-quality undis-
torted images. Optical aberration usually associated with the use of low-quality lenses results
in non-uniform geometric distortions of images and introduces additional errors in the mea-
surement [100]. Especially short objective lenses are not suitable for DIC because of large
distortions at the edges of acquired images [101–103]. The most frequent are barrel, pincush-
ion, and mustache distortions (Figure 2.3) [102, 104–106]. To tackle these issues, several cam-
era calibration techniques using regular chessboard or circle dot target [107–109] have been
developed in the field of computer vision and used in DIC measurements [41]. A simple, easy-
to-implement lens distortion correction method tailored for 2D-DIC was later introduced by
Pan et al. [110].

Figure 2.3: Schematic examples of a photographed grid distorted due to barrel, pincushion, and
mustache distortions (from left to right).
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Despite the availability of correction algorithms, it is of major importance to use high-
quality lenses, suitable for DIC measurements. Telephoto lenses are most suitable; these lenses
have the outermost element of a short focal length and the second set of elements close to a
sensor in order to extend the cone of light so that it appears to have come from a lens of much
greater focal length. This behavior, in turn, eliminates to a great extent the effects of perspec-
tive and fish eye. Generally, a perfectly orthographic view can be achieved using telecentric
lenses [111], but even in the orthographic view out-of-plane deformations caused by rotations
of an observed object cause errors in 2D-DIC and should be avoided [45, 112]. Moreover, to
reach very precise measurement, the experimentalist has to keep in mind that even in case of ex-
tremely expensive high-quality telecentric lenses image distortions may exist due to aberrations
and misalignment of optical elements [110].

2.5 Image compression and file formats

A camera raw image file contains unprocessed data from a sensor. Cameras transform ex-
posure of CCD/CMOS sensor pixels, recorded in an analog form of voltage level, to a digital
signal [113]. Commonly available sensors can handle grayscale (monochrome), red-green-blue
(RGB), or cyan-magenta-yellow-black (CMYK) color channels for each pixel. The intensities
for each channel are usually stored in 8 bits of memory per pixel, yielding 28 = 256 color
resolution. In the case of grayscale, even 12 bits per pixel are common. Besides pixel intensi-
ties, cameras also store metadata containing information about the matrix size, color depth, bit
depth, camera settings, byte-ordering, and image thumbnails in so-called RAW files [114].

Even though RAW format can be handled by modern computer programs, it is in most cases
inconvenient format to work with and RAW data are usually encoded. The encoding of data bits
is standardized to attain a certain structure. There are several formats that identify themselves
as an image when loaded. While infinitely scalable vector images defined mathematically as
geometric primitives are suitable for drawings or letters, photography images attain a form of
a rectangular grid of pixels, i.e., are stored in a form of a raster (bitmap). Examples of raster
image formats are BMP, JPEG, TIFF, and PNG.

To save computer memory, most formats allow compression to be applied to the image
data [115] based on eliminating redundancies in the image data. Mathematical redundancy
elimination is referred to as lossless compression, based on a search for repeating patterns
that are encoded using various mathematical formulas [116]. In such a case, decompression
yields identical images to the original source and achieve up to 50% memory savings. The
lossless compression is most efficient in the case of simple images such as line art and flat
colors [117]. On the other hand, lossy compression discards data considered nonessential to
human perception, such as very bright or dark tones [118]. Lossy compression algorithms are
therefore not irreversible and reduce the image detail quality, but the compression rates are
usually higher compared to lossless compression, reaching about 90% memory savings.

Uncompressed BMP file format was first introduced by Microsoft and despite its simple
encoding and lack of many features, it is still considered as the most basic standard for in-
terchanging images between software environments. JPEG (joint photographic experts group)
format developed in the 1980s represents a standard for lossy image compression in a frequency
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Figure 2.4: Illustration of lossy compression; uncompressed image (left) and the same image
compressed to 10% of its original size (right).

domain. The compression losses result in introducing errors in DIC and therefore high com-
pression is not recommended for DIC analysis. Unlike JPEG, TIFF (tagged image file format)
and PNG (portable network graphics) formats allow employing lossless compression. TIFF
format allows, in addition, inclusion of capabilities in a form of tags. Unlike BMP, JPEG,
or TIFF capable of handling RGB channels, PNG format also includes a fourth channel that
defines transparency.





Chapter 3

Image registration

In general terms, registration of images involves techniques for finding geometrical transforma-
tions that enable aligning two or more images taken at different times, from a different location,
and/or using different sensors. These techniques are utilized in various areas, such as remote
sensing (including multispectral classification, environmental monitoring, change detection, or
integrating information into geographic information systems) [119–121], in medicine [122–
125] to obtain complete information from various diagnostics procedures, in cartography for
map updating [126], and in computer vision for target localization [127–129] or automatic
quality control [130].

The methods can be divided into three major groups: algorithms that work with values of
intensity in the spatial domain [131], those that utilize Fourier transform [132–135], and algo-
rithms that exploit feature detection [136–138]. A comprehensive survey of image registration
techniques was first carried out Ghaffary and Sawchuk [139], followed by Brown [140], or later
by Zitová and Flusser [141].

The utilization of Fast Fourier transform algorithms proved to be computationally effi-
cient [134] and elegant solution for fast registration of images corrupted with optical noise or
changes in illumination [142, 143]. These algorithms exploit a Fourier representation of images
in a frequency domain for locating correlation peak, as introduced next.

3.1 Fourier transform

The Fourier transform F (α) decomposes a signal, being a function of time f(t), into the fre-
quencies α the signal consists of. Hence, the Fourier transform is called the frequency domain
representation of a signal expressed in the time domain. F (α) of f(t) is a complex-valued
function of frequency, whose absolute value represents the amount of that frequency present in
the original function, and whose complex argument is the phase offset in that frequency [144].
Mathematically, the Fourier transform can be written as

F{f(t)} = F (α) =

∫ ∞
−∞

f(t) e−2πiαtdt, (3.1)

where α is a frequency, −2πα is the angular frequency, t represents time, and i =
√
−1.
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In practice the continuous signal f(t) is measured as a sequence f(x) containingN consec-
utive samples, and the function of frequency attains the form of an array called discrete Fourier
transform (DFT) defined as [145]:

D{f(x)} = F (ξ) =
N−1∑
x=1

f(x) e−2πi
xξ
N . (3.2)

To compute a transformation of the original (time or spatial) domain into a frequency do-
main, fast Fourier transform algorithms (FFT) based on factorizing the DFT matrix into a prod-
uct of sparse matrices are used [146, 147]. Such an approach allows reducing the complexity of
computing the DFT from O(N2) to O (N log(N)). The number of frequencies in F (ξ) always
equals the number of samples in the time/spatial domain.

For simplicity, the DFT extension into two dimensions is illustrated considering a square
matrix N ×N representing an image. The expression (3.1) becomes [148]

D{f(x, y)} = F (ξ, η) =
N−1∑
x=1

N−1∑
y=1

f(x, y) e−2πi(
xξ
N

+ yη
N ), (3.3)

where f(x, y) is the image represented by the matrix of pixel intensities, while F (ξ, η) having
the same size as f(x, y) represents the image in the frequency domain. The inverse transform
is calculated as

D−1{F (ξ, η)} = f(x, y) =
1

N2

N−1∑
ξ=1

N−1∑
η=1

F (ξ, η) e2πi(
xξ
N

+ yη
N ), (3.4)

where 1
N2 is the normalization term in the inverse transformation.

Analogically to one-dimensional arrays, DFT decomposes an image into its sine and cosine
components [149, 150]. It is an essential operation in the field of image processing, especially
in filtering, image reconstruction, or image compression [151]. Moreover, Fourier transform
can be exploited for image registration as translation, rotation, reflection, and scale have their
counterpart in the frequency domain. Each component (pixel) in F (ξ, η) represents a particular
frequency contained in the spatial domain image, see Figure 3.1. DFT produces a complex
number valued output which can be displayed with two images, either with the real and imagi-
nary part or with magnitude and phase.

To obtain the results from Eq. (3.4) in two dimensions, a double sum has to be calculated
for each image pixel. Because the Fourier transform is separable, the expression can be written
as

F (ξ, η) =
1

N

N−1∑
y=1

P (ξ, y) e−2πi
ηy
N , (3.5)

where

P (ξ, y) =
1

N

N−1∑
x=1

f(x, y) e−2πi
ξx
N , (3.6)
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Figure 3.1: Gray scale image (left) transformed to a frequency domain displayed in a logarith-
mic scale (right).

Expressing the two-dimensional Fourier transform in the form of 2N one-dimensional trans-
forms decreases the number of required computations and allows to use DFT matrix multipli-
cation4 for each dimension separately.

3.2 Phase correlation

The mathematical principles of the phase correlation alignment method for measuring transla-
tion, rotation, and scaling are thoroughly described in numerous handbooks and papers, e.g.,
[140, 141, 152, 153]. The approach proposed by Kuglin and Hines [132] can be exploited for
registering images that have been shifted relative to each other as described next.

The Fourier transform F (ξ, η) can be decomposed into its real F (ξ, η) and imaginary part
I(ξ, η):

F (ξ, η) = R(ξ, η) + iI(ξ, η), (3.7)

which can be also expressed using the exponential form as

F (ξ, η) = |F (ξ, η)| eiφ(ξ,η), (3.8)

where |F (ξ, η)| is the magnitude of the Fourier transform and φ (ξ, η) is the phase angle [140].

Let f1(x, y) and f2(x, y) be two images which are related through f2(x, y) = f1(x −
x0, y − y0), as indicated in Figure 3.2, and there are no periodic structures in these images.
Their corresponding Fourier transforms F1(ξ, η) and F2(ξ, η) will be related by

F2(ξ, η) = F1(ξ, η)e−2πi(ξx0+ηy0). (3.9)

4https://en.wikipedia.org/wiki/DFT_matrix

https://en.wikipedia.org/wiki/DFT_matrix
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The normalized cross-power spectrum of the two images f1(x, y) and f2(x, y) with their Fourier
transforms F1(ξ, η) and F2(ξ, η) is defined as

Zf1,f2(ξ, η) =
F1(ξ, η)F ∗2 (ξ, η)

|F1(ξ, η)F2(ξ, η)|
= e2πi(ξx0+ηy0) (3.10)

where F ∗(ξ, η) is the complex conjugate of F (ξ, η).

As the correlation theorem [140] states, the Fourier transform of the correlation of two
images is the product of the Fourier transform of one image and the complex conjugate of
the Fourier transform of the other. Therefore, as the shift theorem [132] guarantees, the
cross-power spectrum is equivalent to the phase difference between the images. However,
the cross-correlation must be normalized since intensity changes (non-uniform illumination in
time) would influence the measure. The inverse Fourier transform of the cross-power spectrum
yields a discrete impulse function

δf1,f2(x, y) = D−1{Zf1,f2(ξ, η)}, (3.11)

which is approximately zero everywhere except at the coordinates corresponding to the shift
(−x0,−y0):

δ(x, y) =

{
1 if (x, y) = (−x0,−y0)
0 otherwise

. (3.12)

For illustration see Figure 3.3. In practice, there is never such a sharp peak in δ(x, y) because
of optical noise, mutual rotation of images, and displacements different from whole pixels.

x0
y0

x

y

Figure 3.2: Example of two images shifted in Inscape [154] by x0 = 15.5% and y0 = 21.5%,
corresponding to 39.7 and 54.9 px, respectively.
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Figure 3.3: Cross-power spectrum of the two shifted images from Figure 3.2 (left) and a cor-
responding discrete impulse function (right) with a white pixel illustrating the maximum at
x = 40 px and y = 55 px.

3.3 Subpixel registration

Although the method based on cross-correlation of images in the frequency domain is fast and
robust, there are two considerable limitations: first, it handles only translations along Cartesian
axes of the image, second, no sub-pixel precision can be reached because the peak is found in
a matrix of the same size as the registered image. The first limitation was tackled by several
authors who obtained angle and scaling factors through a slightly modified FFT procedure [152,
155]. As the measurement of displacements involves registering relatively small pixel subsets,
the bigger demands on computational power would outweigh slight accuracy improvements by
considering rotation and scaling. On the other hand, reaching subpixel accuracy is crucial.

There are several alternatives how to reach a subpixel accuracy of the image registration:
(i) fitting a parabolic function around the correlation peak [156], (ii) computing the ratio be-
tween pixel values near the correlation peak [157], or (iii) upsampling the correlation peak in
the Fourier space [158, 159]. The first approach (i) appears to be a bad solution since it was
demonstrated that the peak fitting methods yield systematic errors [160, 161], while the second
approach (ii) lacks robustness [159]. The algorithms based on (iii) that involve upsampling
the Fourier transform around the correlation peak appear to be the most robust and resistant to
noise, yet accurate and computationally efficient [158, 161].

The upsampling in the Fourier transform is a commonly used technique when enhancing
the resolution of an image. This is accomplished by embedding the image in the Fourier domain
in a larger matrix of zeros (a technique also known as zero padding), see Figure 3.4. The matrix
size is dictated by the required size of input/output images or, in the case of image registration,
the size of correlated images (pixel subsets) N and required subpixel accuracy κ. The size of
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zero-padding band α can be calculated as

α =
N(κ− 1)

2
. (3.13)

Such addition of zero frequencies does not have any impact on the distribution of features
within the image in the spatial domain since the non-zero frequencies and amplitudes are pre-
served and only the number of samples increases, see Figure 3.5. By applying the same tech-
nique on the cross-power spectrum from Figure 3.3, a refinement around of correlation peak
can be achieved as demonstrated in Figure 3.6.

F11 F12

ηu

ξu

Fu(ξu, ηu)

F12F11 [0]

[0] [0]zero
padding

η0

ξ0

F21 F22

F0(ξ0, η0)

[0]

F21 F22[0]

N
2

α N
2

κN

Figure 3.4: Illustration of zero-padding for reaching subpixel accuracy of the cross-correlation
procedure.

The upsampling of Zf1,f2(ξ, η) by zero-padding of the product F1(ξ, η)F ∗2 (ξ, η) and us-
ing the inverse DFT would be a straightforward approach to compute x0 and y0 with a sub-
pixel accuracy. However, this procedure is computationally very inefficient since registering
an image with the size of N × N and the required accuracy κ requires the computation of
κN × κN Fourier transforms. The developed software introduced in Chapter 6 employs the
algorithm proposed by Guizar-Sicairos et al. [158]. Using their approach, the upsampling is
carried efficiently. It obtains an initial estimate of the cross-correlation peak by the FFT-based
procedure described in Section 3.2 with the setting of κ = 2. Once the location of the cross-
correlation peak is computed to within half a pixel, a matrix multiplication implementation of
the DFT is used to refine the estimate of x0 and y0 by calculating the fully upsampled product
F1(ξ, η)F ∗2 (ξ, η) in a 1.5 × 1.5 region around the initial estimate [162]. Their approach was
classified as one of the most reliable algorithms to register images using a phase correlation
method [163, 164].
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Figure 3.5: Image upscaling through upsampling in the frequency domain: original image (top
left), cross-correlation spectrum (top right), zero-padded spectrum (bottom left), and the inverse
of the upsampled spectrum yielding an upsampled original image (bottom right).
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Figure 3.6: A peak in discrete impulse function δ(x, y) before (left) and after cross-power
upscaling to reach a subpixel fraction accuracy κ; the peaks are located at at x = 40 px and
y = 55 px, and x = 39.7 px and y = 54.9 px, respectively. The shift calculation was applied to
the images from Figure 3.2.



Chapter 4

Assessment of stochastic patterns for DIC

Based on: J. Antoš, V. Nežerka, and M. Somr, Assessment of 2D-DIC stochastic patterns,
Acta Polytechnica CTU Proceedings 13 (2017) 1–10, doi: 10.14311/APP.2017.13.0001

In order to facilitate correlation and obtain subset displacements/deformations by identify-
ing areas of matching grey-scale values between the speckle pattern in each subset of deformed
and underformed (reference) images. To facilitate the correlation, a stochastic speckle pattern
must be applied (if not present naturally) to a specimen surface in order to provide a random
grey-level variations at the sufficient quality of which is fundamental to the precision of the
measured displacement data. It is well established that the trade-off between the data resolu-
tion and precision is affected by the quality of a pattern. Resolution of displacement fields is
maximized by reducing the size of the subsets, but as the subset size decreases, the uncertainty
in the strain measurement increases due to a reduction in the number of features to track within
each subset [64]. Therefore, the resolution and accuracy of the displacement and deformation
fields are limited by the total number of pixels within an image.

The accuracy of DIC is an issue frequently discussed by both, theoreticians and experi-
mentalists [85, 165]. Besides the choice of suitable DIC algorithms, other factors substantially
influence the measurement accuracy. The errors may be classified into two categories: (i) sys-
tematic experimental errors such as bad calibration and setting of image acquisition system and
(ii) errors produced by correlation algorithms. A majority of research into the accuracy of DIC
is focused on correlation algorithms and processing parameters [166], shape function selec-
tion [167], or methods of obtaining subpixel accuracy [168]. Less attention has been paid to
the effect of the quality of the speckle pattern. It is important for the artificial pattern or natural
texture to be adjusted in accordance with the expected displacement field in order to maxi-
mize measurement accuracy, as speckles can be both too large and too small for the particular
measurement [169]. Quantitative error analysis [170–173] shows that the measurement error
depends crucially on the presence of large intensity gradients within the pattern. Therefore,
the technique in most cases requires a specimen preparation procedure to enhance the surface
texture, since the natural one does not provide a required quality in terms of intensity gradients
and speckle-size distribution.

http://dx.doi.org/10.14311/APP.2017.13.0001
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Pattern assessment has been discussed by a few authors [41, 174, 175], offering a number
of methods to evaluate the quality of applied patterns. Pan et al. [86] presented a number of
assessment criteria based upon the local subset intensity gradients [85] and the global mean
intensity gradient (MIG) throughout the image. The latter criteria showed a good agreement
to results obtained numerically. The benefit of applying the global criteria is that these are
astraightforward. High MIG values typically result in smaller bias and less dispersion in DIC
measurements. On the other hand, Crammonde et al. [176] objected that global parameters,
such as MIG, are not sufficient to evaluate strain accuracy. Based on their findings, simple
means of a randomness assessment is to employ the outcomes of the Shannon entropy the-
ory [177].

In this chapter, various patterns produced by the spraying white/black dots on a contrast
background were investigated. In addition, natural textures of various materials were studied
as well, to demonstrate their performance. The knowledge of a texture suitability is essential
when monitoring existing structures where application of artificial patterns is not possible. To
eliminate the impact caused by image acquisition system (such as the distortion of the camera
lens, lighting variation, etc.) during the experiment, numerical approach was utilized to inves-
tigate the relationship between Shannon entropy, mean intensity gradient, values of correlation
coefficient, and error in DIC measurements. The explanation of the mentioned parameters is
provided next.

4.1 Assessment criteria

4.1.1 Normalized cross-correlation

Correlation between two signals [131] (also reffered to as cross-correlation) is a standard ap-
proach to feature detection and image registration [178–180]). The normalized form of corre-
lation takes into account intensities relative to the highest one, thus eliminating the sensitivity
to changes in illumination intensity. However, it does not have a correspondingly simple and
efficient frequency domain expression. For this reason, normalized cross-correlation must be
computed in a spatial domain and fast spatial domain matching methods had to be developed.

4.1.2 Mean intensity gradient

Mean intensity gradient (MIG) was proposed by Pan et al. [86] as a suitable global parameter
for evaluating the quality of a speckle pattern over the entire domain. Both a mean bias error and
standard deviation of measured displacements are influenced by the MIG of a speckle pattern.
The speckle pattern with a large MIG is supposed to produce small displacement measurement
errors. MIG is defined as

δf =
W∑
i=1

H∑
j=1

|∇f (xij)|
1

W ×H
, (4.1)

whereW andH are the image width and height in pixels, |∇f (xij)| =
√
fi (xij)

2 + fj (xij)
2 is

the modulus of the local intensity gradient. fi (xij) and fj (xij) are the i- and j-directional in-
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tensity derivatives at pixel (xij) respectively, which can be computed using a central difference
algorithm.

4.1.3 Shannon entropy

A high Shannon entropy value indicates a high level of texturing, or broadness in the greyscale
distribution of the image, beneficial for maximizing the correlation function peak when a cor-
rect match has been found. The Shannon entropy parameter is defined as [181]

Ψ =
W∑
i=1

H∑
i=j

f(xij)log (f(xij)) . (4.2)

4.2 Assessment of patterns and textures

Randomly distributed speckles must not exhibit any preferential directions. High contrasts are
required to provide sharp peaks in the correlation function. To test this requirement, initial syn-
thetic tests on samples of 400×400 px were performed on six model patterns (Figure 4.1). The
patterns/textures were tested with respect to four quality indicators: value of cross-correlation
coefficient for two different subset sizes (10×10 px and 30×30 px), Shannon entropy, and
MIG. The summary of the investigated patterns and textures is provided in Table 4.1.

Based on the values of normalized cross-correlation functions presented in the form of
surface plots in Figures 4.2 and 4.3, it can be concluded that the correlation function peaks
can be highlighted by setting bigger subset size since these contain more distinct features.
Especially in the case of small subset size, 10×10 px, the correlation peaks on coarse textures
could not be clearly identified. This could lead to huge errors of DIC measurements in the
case of significantly distorted images. However, the findings cannot be generalized, since in
some patterns the cross-correlation correlation function does not exhibit any distinct peak in
for small subsets, while correlation of the larger one results in unique match and low value of
mean correlation coefficient (cf. Figures 4.2(b,f), 4.3(b,f), and Table 4.1). Therefore, the pattern
assessment based on the the mean value of the cross-correlation function must be carried out
for any subset size independently. Moreover, a statistical information about number of peaks
in the form of a decay in the power law distribution would provide more accurate description.

Based on observation of distribution of correlation coefficient a power law distribution
can be assumed (Figures 4.4 and 4.5). The power law function is defined by equation yp =
x−αp , where α is the decay parameter which provides information about the distribution of
correlation coefficient over the investigated domain. Larger α indicates smaller amount of
unwanted correlation peaks which is desirable.

It is also clear that neither Shannon entropy nor MIG are capable of providing clear indica-
tion of the pattern quality since these two are not in agreement—once the pattern is, relative to
other ones, regarded as superior to others based on Shannon entropy, MIG provides completely
different results, see Table 4.1. Therefore, new more universal criteria taking into account size,
contrast, and size-distribution of speckles should be proposed.
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(a) fine spray pattern (b) coarse air-brush pattern (c) white sprayed dots

(d) natural texture of concrete (e) masonry wall (f) texture of wood

Figure 4.1: Investigated artificial patterns (top) and natural textures (bottom).

Table 4.1: Mean correlation coefficient, γ(xij), power law distribution decay parameter α, Ψ,
and δf for tested patterns/textures and different size of subsets.

γ(xij) α Ψ δf

Sample 10×10 30×30 10×10 30×30
Fine spray pattern (a) 0.152 0.054 0.847 0.959 5.524 121.182

Coarse air-brush pattern (b) 0.190 0.107 1.009 1.046 5.413 127.614
White spray dots (c) 0.089 0.138 1.148 0.997 4.972 82.198

Natural texture of concrete (d) 0.090 0.039 1.027 0.975 6.292 75.849
Masonry wall (e) 0.200 0.187 0.879 0.939 4.250 50.914

Texture of wood (f) 0.208 0.097 0.878 0.981 5.012 29.027



Assessment of stochastic patterns for DIC 31

(a) fine spray pattern (b) coarse air-brush pattern

(c) white sprayed dots (d) natural texture of concrete

(e) masonry wall (f) texture of wood

Figure 4.2: Correlation function values for 10×10 px subset size.
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(a) fine spray pattern (b) coarse air-brush pattern

(c) white sprayed dots (d) natural texture of concrete

(e) masonry wall (f) texture of wood

Figure 4.3: Correlation function values for 30×30 px subset size.
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(a) subset 10×10 px (α = 0.847)
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(b) subset 30×30 px (α = 0.959)

Figure 4.4: Distribution of correlation coefficient, fine spray pattern.
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(a) subset 10×10 px (α = 0.879)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation coefficient (in absolute value) [-]

0

0.5

1

1.5

2

2.5

3

3.5

F
re

q
u

e
n

c
y
 [

-]

×104

(b) subset 30×30 px (α = 0.939)

Figure 4.5: Distribution of correlation coefficient, masonry wall.

4.3 Virtual Stretching of Patterns and Textures

The artificial patterns and natural textures were tested in the proof-of-concept experiments
carried out virtually on a computer by prescribing a constant deformation. Special attention
was paid to the ability of the pattern to provide high-accuracy measurements at deformations
reaching 5%, at which poor patterns fail [182].

The evaluation and testing of patterns was performed using own MATLAB scripts by plac-
ing virtual extensometers at the edges of the tested samples. In this initial study the images con-
taining 8-bit speckle patterns were virtually stretched up to 5% in 10 steps. Image sequences
were then evaluated in open-source 2D-DIC software package Ncorr [81] with the same setting
of parameters. Subset sizes of 10 px and 30 px were chosen to demonstrate the correlation
between the mean correlation coefficient mentioned in the Section 4.2 and measurement errors.

As the number of speckles within the patterns increased, the measurement errors decreased.
Moreover, larger sized speckles provided lower error than patterns with smaller speckles. Global
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Figure 4.6: Displacement error for 10×10 px subset size.
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(b) 5% deformation

Figure 4.7: Displacement error for 30×30 px subset size.

pattern quality parameters were discussed and Shannon entropy was used as an example to
demonstrate that the global measures are not sufficient to assess the quality and properties of
the patterns. This is illustrated by comparing errors at different stretching magnitude for differ-
ent speckle sizes (Figure 4.6 and 4.7).

Based on the research of Crammond et al. [176] and outcomes of the presented study it
can be concluded that multi-criteria approach has to be addressed. So far it appears that a com-
bination of Shannon entropy and evaluation of decay in power law distribution of correlation
coefficient values provide the most accurate estimate of a pattern performance and have been
implemented in the software developed along with other research presented in this thesis.
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Hardware

Hardware solutions fully benefiting from the lightweight algorithms for high-frequency/long-
term remote measurements of displacements were developed and tested in outdoor conditions.
These solutions were developed with different goals in mind; the performance-focused assem-
bly was intended for real-time measurements with a collection of data at high sampling rates,
while the reliability-focused assembly was designed primarily to withstand rain, high/low tem-
peratures, and most importantly a lack of electricity from the grid.

All DIC measurement systems employ one or more digital cameras (stereo DIC) equipped
with an optical lens. Powerful flicker-free lamps that constantly illuminate the observed con-
trast pattern have to be utilized. For laboratory measurements, this equipment is accessible
and easy to install, however, in outdoor applications the demands on equipment increase sig-
nificantly. Next, basic hardware components for DIC measurements are described and specific
modifications for real-time high-frequency/long-term measurements are outlined.

5.1 Basic components for measurements

5.1.1 Camera

Reliable cameras which have a sufficient resolution and for manual focusing are essential for
any DIC measurement.

On the other hand, even with state-of-the-art cameras, a DIC measurement can be easily
spoiled, e.g., by setting automatic image stabilization that prevents minute shifts within a se-
quence of images, thus working against the efforts of the experimentalist trying to capture these
changes between images.

Besides the camera resolution, a physical pixel size matters. The advancing technological
development of CCD and CMOS sensors allows for the production of finer and finer semi-
conductor structures. As a general trend, sensor and pixel sizes shrink in order to cut more
and more sensors out of one wafer [183]. This is possible because the sensitivity of the pix-
els increasingly enhances, too, as much as the noise performance of the electronics is being
optimized. Cameras having high resolution but small pixel size, typically in cellular phones,
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cannot deliver high-quality images because electrons can leap to neighboring pixels, resulting
in optical noise [183]. For that reason, cameras having a full-frame sensor size but low res-
olution are used for image analysis, rather than high-resolution cameras equipped with small
sensors. A larger sensor with larger pixels is in almost every case the technically better choice,
however, the price is always higher. For example, even the high-end iPhone 8 cellular phone
has a pixel size of 1.22 µm (12 Mpx resolution), while a standard industrial camera Ximea
MC031MG-SY designed for computer vision has a physical pixel size of 3.45 µm (resolution
3.1 Mpx). On the other hand, portable action GoPro5 cameras with tiny 1/2.3" sensors with a
pixel size of 1.55 µm were successfully employed for outdoor DIC measurements [184].

Duplicator CameraLensLens sun shield

Figure 5.1: Industrial camera Ximea MC031MG-SY with equiped Sigma lens 80-400 VR
F/4.5-5.6D ED, duplicator and camera mount reduction ring.

Camera’s construction also plays an important role in image acquisition for DIC measure-
ments. Even though cameras equipped with a mechanical shutter (DSLR) traditionally provide
images of a superior quality to mirrorless ones (but the difference has been diminishing over
the past decade), the mechanism of a rolling shutter is prone to wear, making DSLR less suit-
able for long-term measurements where the acquisition of large quantities of images can be
anticipated.

5.1.2 Lenses

When conducting a DIC measurement, optical lenses must be selected properly for that partic-
ular set-up. The chosen focal length should be sufficient enough to utilize the entire field of

5https://gopro.com/
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vision for the region of interest in order to maximize the pixel/physical size (px/mm) ratio. The
construction and quality of the whole lens optical system also play an important role in provid-
ing undistorted images. Optical aberrations result in non-uniform geometric distortions [100]
and therefore short focal lengths are not suitable—such lenses introduce large distortions of
images at the edges [101–103]. Telecentric lenses focused to infinity however provide a perfect
orthographic view [65] (Figure 5.2).

Figure 5.2: A scene with two identical cups (top) photographed using common objective lenses
putting the objects into a perspective view (bottom left) and using telecentric lenses (bottom
right) creating an orthographic view perfectly suitable for optical measurements of in-plane
translations and deformations.

5.1.3 Camera mounting

Even though a false rigid-body motion due to movements of a camera can be corrected by
including a fixed point into the recorded images, camera rotations or out-of-plane movements
introduce hard-to-fix or even irreparable errors to a measurement. Therefore, fixing the cam-
era using a tripod or threaded rods (in extreme circumstances, such as exposure to wind) is
essential. Due to small size of modern industrial cameras and impossibility of down-scaling
objective lenses, not a camera but objective lenses are mounted using a specifically designed
mounting ring near the center of gravity to avoid imbalance and deformations. To avoid camera
vibrations (environmental influences or artificially induced vibrations), special rubber bearing
pads or gyroscope-based gimbal holders with dampers should be used.
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5.1.4 Computing unit

Acquired images are sent either by a manual transfer using memory cards or any other stor-
age medium or (preferably) using cables/wireless connection to a computer for evaluation of
texture changes within the images. The computational power matters mainly in the case of
real-time high-frequency measurement (see Chapter 6, Section 6.2), but capability of process-
ing high volumes of data in a short time is convenient also in case of off-line computations (see
Chapter 7).

In this regard, a remote structural health monitoring when a limited number of images per
day is required, presents the least demanding application with respect to the computational
power and the computations can be accomplished using only a PLC unit/small single board
computer, such as Raspberry Pi1.

When designing a computer suitable for evaluation of displacements within images using
commonly available DIC packages [71, 81, 185], central processing units (CPUs) have the ma-
jor impact on computational speed as these packages are not designed for graphics processing
unit (GPU)-based calculations. Production technology (CPU type and brand) greatly influence
the performance, while CPU’s clock rate has only a minor impact on DIC calculations (Ta-
ble 6.1). The separability of regions in DIC allows parallelization and therefore multi-core
(multi-thread) processors accelerate the calculations (for full-field calculations or when moni-
toring displacements using multiple virtual extensometers). The size of random access memory
(RAM) matters mainly during postprocessing [186], but its frequency and latency are crucial
and presents a calculation bottleneck if inadequately slow. For outdoor applications, a protec-
tive case and must be designed to provide a sufficient resilience.

5.2 Real-time measurement at high sampling rates

For real-time measurements, industrial cameras turned out to be most suitable because of their
high sampling (frame) rates, sufficient resolution and sensitivity, pixel size, reliability, and
availability of APIs for user-friendly development.

Wide range of C-mount thread industrial cameras plays the key role in area of computer
vision nowadays. C-mount thread reduction rings enable using objective lenses designed, e.g.,
for Nikon DSLR cameras having F-mount thread in combination with these compact sensors.
Magnification elements (duplicator or quadruplicator) enable to achieve higher focal lengths
and thus increasing overall zooming ability of the whole optical system.

With such an advanced recording equipment, it is desired to avoid bottlenecks during the
data transfer. If a user requires saving captured images during the measurement, solid state
drive (SSD) is the prudent option. Nevertheless, selection of a proper communication port and
connecting cable cannot be neglected. In this regard, usage of USB 3.x or Gigabit Ethernet
(GigE) interfaces are recommended. It is important to keep in mind that the used cable must be
shielded and cannot exceed 10 m in length. If longer cables are used, they must be active (ex-
ternally supplied with electricity) because of relatively high consumption of cameras (typically

1https://www.raspberrypi.org/
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about 2 A at 5 V), causing undesirable voltage drop.

Regarding the data transfer, optic fibers are a promising technology for extreme applica-
tions when high-speed cameras are utilized. Because these fibers are not capable of conducting
electricity, an additional power supply for the camera must be provided. In addition, powerful
cameras require active cooling; the higher the temperature on a sensor, the higher the optical
noise.

The PCI express (second generation) cards is nowadays recommended by manufacturers
for state-of-the art cameras instead of USB 3.1, increasing the bandwidth from 10 GBit/s to
20 GBit/s and more. Such a bandwidth is needed for, e.g., 50 Mpx at 22 fps and 12 bit depth1.

Figure 5.3: Real-time measurement of bridge deflections under the passing traffic.

5.3 Remote long-term monitoring

For a remote long-term monitoring, the demands on sampling rates are not usually high. To as-
sess development of cracks or movements of structural elements under the quasi-static loading
due to a loss of stiffness caused by degradation construction materials, only about an image a
day can be considered sufficient for the monitoring. Such a measurement can be challenging,
especially when considering a fully autonomous off-grid solution. Special measuring unit has
been designed for a remote monitoring of an unstable rock massif near Vrané nad Vltavou,
Czech Republic (Figure 5.4).

The basic requirements on a remote long-term monitoring system can be summarized as
follows:

1https://www.ximea.com
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1. Reliability—the remote measurement line is often out of reach, which can be easily re-
solved using remote control when connected to a grid, but off-grid solutions being idle
most of the time require a GSM- or Wi-Fi (if available) remote switch; it is important to
send a log-file during each session to a server, containing the information about voltage
on battery provided by a voltmeter and CPU temperature for an elementary diagnostics.

2. Availability of GSM, at least 3G, optimally 4G (LTE)—the images are analyzed on a
cloud server to avoid energy consumption due to excessive loading of the CPU unit and
enable back-up of the data; it is inconvenient to store the data on the integrated SD card
because of its limited service life and capacity.

3. Weather-resistance—low temperatures can shorten the battery life and capacity, while
high temperatures impose a risk of damaging the electrical circuits and components and
introduce an additional optical noise during image acquisition; the exposure to low tem-
peratures can result in vapor condensation and therefore the protective box must be com-
pletely sealed at cold and dry environment and silica gel should be placed inside.

4. Longevity of components—for example, DSLR cameras cannot be used for this type of
applications due to wear of shutter components that require replacement after capturing
about 200k images.

For an on-going project, the PLC unit has been represented by a Raspberry Pi 3 single-
board computer. The unit was assembled using a Raspberry Pi 3 v.2 NoIR camera, GSM LTE
modem, AGM 12 V gel battery, solar panel for charging the battery, charge controller, and DC-
to-DC bulk converter. While the charge controller was included to regulate the charging current
and taper it as the battery reaches fully charged voltage, DC-to-DC lowered the relatively high
voltage on the battery (about 12 V) to 5 V required by the Raspberry PLC board. In order to
save as much energy as possible, the turning on/off cycles were controlled using a Sleepy Pi
power management board, playing the role of a real-time clock (RTC) trigger. Scheme of this
assembly is provided in Figure 5.5 and its work-flow diagram is presented in Figure 5.6.

After turning on the PLC unit (Raspberry Pi), the computer first establishes a connection
with a cloud at which the data are further processed (Figure 5.6). Next, the camera is initialized,
images are taken and uploaded to the cloud along with a log-file. Once the process is success-
fully finished, the PLC unit is switched off to save energy. This strategy proved to be reasonable
since the measurement has operated continuously for over 11 months and yields 2 images each
day. This experiment is very valuable in terms of experience to be exploited if reproduced in
the future; the main issues encountered and respective measures/solutions adopted during the
project are summarized in Table 5.1.
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Camera

Sensing unit

Solar panel

Figure 5.4: Assembly for a long-term remote monitoring of an unstable rock massif.

Table 5.1: Issues related to long-term remote measurements
.

Issue Measures/Solution
Camera movement Fixed reference point in the frame,

fixed stiff attachment to the ground
Low temperatures Heating using resistance wires
High temperatures Active or passive cooling system
Direct sunlight Camera shielding
Memory media failure Data synchronization with a cloud server
Illumination failure Redundant light source
Power source failure Redundant power source connected in-parallel,

optimally to an independent branch
Unstable GSM signal External antenna with a high gain
High power consumption of GSM modem External trigger for waking the modem up

(only) when needed
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PLC unit Raspberry PI 4B

Solar panel

Charge controllerBuck converter

AGM battery

GSM LTE modem Personal computer

Cloud

Camera

Figure 5.5: Scheme of an autonomous assembly for a long monitoring.
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Turn on the PLC unit by
an external RTC trigger

Check the connection

using the ping command

Turn the PLC unit off

no

Any response
from IP 8.8.8.8.no

yes

Connect to a cloud and
read a configuration file

Initialize a camera

Take image(s)

Upload the image(s)

Upload succesful

Wait

yes

to the cloud

Reboot the

PLC unit

Figure 5.6: Work-flow diagram for a long-term remote measurement.
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Real-time measurements

Based on: J. Antoš, V. Nežerka, and M. Somr, Real-time optical measurement of
displacements using subpixel image registration, Experimental Techniques 43 (2019)
315–323, doi: 10.1007/s40799-019-00315-1

Despite the rapid emergence of advanced turnkey commercial DIC systems during the last
two decades [187], a simple open-source DIC tool for real-time monitoring displacements has
not been available. The proposed solution offers real-time measurement of displacements in
2D at predefined locations by using virtual extensometers, being a couple of pixel subsets.
The developed open-source software utilizes algorithms based on discrete Fourier transform
(DFT) optimized for fast evaluation of subset translations with subpixel accuracy. It is worth
mentioning that real-time 3D positioning and tracking systems have been developed [188], but
these require much more sophisticated equipment, skilled operators, and their use is usually
limited to laboratory conditions.

The real-time measurement system proposed here consists of three fundamental elements:
a camera, a communication channel (cable or wireless), and a computer. There are several
requirements on the camera, including high resolution, low digital noise, and a long lifetime
period. The last requirement rules out reflex cameras that have a limited lifespan regarding the
number of acquired images. On the other hand, cameras equipped with monochrome CMOS
(complementary metal-oxide-semiconductor) chips allow for obtaining the same or higher spa-
tial resolution with the satisfying sensitivity at a lower price. The communication channel
should not be the weakest link in the system; commonly used USB 3.x or Ethernet cables are
sufficient and reliable.

Besides these basic components, a strong illumination is recommended to reduce digital
noise by allowing a high signal to noise ratio. High levels of illumination also enable a reduc-
tion in a lens diaphragm opening by setting lower f-number (aperture), resulting in a higher
depth of field for the acquired images. This is particularly advantageous if the observed surface
is uneven. Moreover, a sufficient exposure can be reached at higher shutter speed, providing
blur-free images at higher displacement/deformation rates.

http://dx.doi.org/10.1007/s40799-019-00315-1
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6.1 Algorithms and program work flow

The developed software tool RTCorr (Real-Time Correlation) for real-time optical measure-
ment of displacements was developed in Python 3.6. It offers a user-friendly graphical user
interface (GUI), see Figure 6.1, enabling placement and management of virtual extensome-
ters, setting DIC parameters, and export of data. In addition, it provides information about the
camera chip temperature and allows for precise focusing by calculation of a mean intensity
gradient [58, 189], defined as

Ψf =
W∑
i=1

H∑
j=1

|Of (x, y)| 1

WH
, (6.1)

where |Of (x, y)| =
√
fx (x, y)2 + fy (x, y)2, in which fx (x, y) and fy (x, y) are the x- and

y-directional intensity derivatives at pixel located at (x, y) within the image f , respectively.
W and H are the image width and height, respectively. After zooming to a region of interest,
maximizing Ψ leads to a perfect camera focus, see the demonstration in Figure 6.2.

Figure 6.1: Graphical user interface of RTCorr v1.07.

6.1.1 Sub-pixel registration

RTCorr employs the upsampled matrix-multiplication discrete Fourier transform (DFT), pro-
posed by Guizar-Sicairos et al. [158], to reach subpixel accuracy of aligning subsets. Using
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Ψ = 0.95 Ψ = 1.55 Ψ = 2.63 Ψ = 9.93

Figure 6.2: Dependence of the mean intensity gradient on a camera focus.

this approach, cross-correlation for each square subset of pixels of a side length N is accom-
plished in a frequency domain [190, 191]. The utilization of Fourier transform renders the
registration computationally efficient [134] and insensitive to optical noise or changes in illu-
mination [142, 143]. Unlike the majority of DIC software, based on determining locations of
reference subsets within current images, the subsets in RTCorr are fixed and represent an imag-
inary window through which a motion of the underlying pattern is observed. Since the pixel
subsets are registered by phase retrieval, only their translation is evaluated, and the displace-
ment field is averaged over the subset area.

The employed registration algorithm is capable of computing subset shifts within a fraction
of a pixel, 1/κ. The difference between the pixel and subpixel accuracy of results is clearly
illustrated in Figure 6.3 on an example of a 2D displacement field, calculated considering κ =
1 px−1 (pixel accuracy) and κ = 50 px−1 (subpixel accuracy).

Figure 6.3: Illustration of pixel (left) and subpixel (right) accuracy of displacements ranging
between 0.2 and 3.7 pixels on results of a direct tensile test.

The program is capable of accomplishing simultaneous measurements of relative displace-
ments in 2D using an arbitrary number of virtual extensometers, equivalent to physical ones.
A full-field 2D DIC analysis can be carried out once the measurement is finished from the ac-
quired images that are saved (if required) to a project folder. The measurement is carried out in
pixels, but it can be scaled to physical units. Otherwise, it is carried out in pixels. The collected
data are saved on a hard drive during the measurement so that they cannot be lost in the case of
a software crash. The saved data include time steps, displacements of extensometer ends and
relative displacements, calculated as the ratio of an extensometer extension to its length.

The source files and manual with a thorough description of the program structure and GUI
controls are provided at GitHub [185].
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6.1.2 Registration of large displacements

In the small-displacement mode, reaching up to about 1/4N , the shift of subsets ∆u at a time
T is calculated by comparing their configuration with the one in a reference image acquired at
T = 0, so that

u(T ) = ∆u(0, T ). (6.2)

RTCorr also offers a large-displacement mode, in which the shift is calculated as

u(T ) = ∆u(T − 1, T ) + u(T − 1). (6.3)

By relating the subsets at time T to their configuration at T − 1, an arbitrary displacement can
be tracked, limited only by the ROI size. However, the displacement of a subset between T and
T − 1 still should not exceed the value of 1/4N . The large-displacement mode should be used
only if needed because summing the measured shifts may result in accumulating measurement
errors.

The small-displacement mode is analogic to the Eulerian approach to observing motion of
a body [192]. In this mode the deformed and shifted image flows through the fixed extensome-
ters. In the large-displacement mode the extensometers deform with the underlaying image
and their position is updated for each frame, analogically to the Lagrangian approach [193].
This allows for evaluating displacements exceeding the subset size and severe deformations of
subsets.

6.2 Testing and validation

The testing and validation were primarily accomplished on a custom-built desktop computer
equipped with an Intel 4 core i3-8350K CPU, 16 GB RAM, and 500 GB SSD hard drive.
Besides, performance tests were carried out on three different computers, all listed in Table 6.1;
CPU π106 test score refers to a time needed to computing 106 digits of π using SymPy package
in Python. All the computers were equipped with a USB 3.1 hub.

Table 6.1: Computers used for the performance tests; the abbreviations in parentheses are used
in the following figures

.
Computer CPU (CPU cores) π106 test Operating system

Laptop Lenovo T440 (L1) Intel i5-4200U, 1.6 GHz (4) 72.91 s Ubuntu 18.04.1
Laptop Lenovo T480 (L2) Intel i5-8250U, 1.6 GHz (8) 52.31 s Ubuntu 18.04.1
Custom-built desktop (D1) Intel i3-8350K, 4.4 GHz (4) 44.34 s Ubuntu 18.04.1
Desktop Dell T1600 (D2) Intel Xeon E31280, 3.5 GHz (8) 51.69 s Ubuntu 18.04.1

The images were taken using a Ximea MC050MG-SY monochromatic camera, equipped
with a 3.45×3.45 µm pixel-size CMOS sensor capable of delivering 76 frames per second at a
5 Mpx resolution. Low distortion was ensured by using a Kowa LM50HC C-mount objective
lens with a fixed focal length of 50 mm. Using long objective lenses is favorable to reduce the
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distortions if telecentric lenses are not available. The data transfer was accomplished using a
USB 3.1 cable.

With the specified hardware configuration and setting of DIC parameters as N = 36 px
and κ = 32 px−1, the maximum sampling frequency ν reached for a single extensometer was
equal to 67.05±0.22 Hz, see Figure 6.4. The results of the performance study and the π106 test
demonstrate that the maximum sampling frequency ν is proportional to the CPU speed.

2 4 6 8 10

Number of extensometers

20

40

60

ν
[H

z]

L1
L2
D1
D2

Figure 6.4: Relationship between the maximum sampling frequency ν and a number of exten-
someters with the specified hardware available and setting of DIC parameters as N = 132 px
and κ = 128 px−1.

6.2.1 Measurement bias

A static test with a perfectly fixed specimen was performed in order to assess the systematic
error of the measurement system. The camera was focused on a random pattern, consisting
of black speckles ranging approximately between 0.05 and 2 mm in diameter, applied to an
illuminated white wall. LED lights with a constant current driver were used provide flicker-free
illumination. The distance between the camera and the observed surface was 50 cm, yielding a
scaling factor of 22.89 px/mm.

The study was focused on the impact of a subset size N and the required subpixel accuracy
κ on measurement errors and a maximum sampling frequency ν. The impact on ν was studied
when using 10 virtual extensometers to highlight the role of CPU speed. The observed random
pattern contained speckles small enough so that even the smallest studied subset of N = 4 px
was unique in its neighborhood and contained sufficient amount of features to track. With larger
N the pattern randomness within subsets increased, as demonstrated by their entropy [177], see
Figure 6.5. The entropies of the model subsets were calculated as

H = −
∑

pk log2(pk), (6.4)

where k is the number of intensity levels within subsets, and pk is the probability associated
with the particular intensity level [194]. The length of a virtual extensometer, i.e., the distance
between the centroids of two coupled subsets, was 100 mm. The oscillations of the extensome-
ter extensions were monitored for 10 min at a maximum possible sampling frequency. The
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measurement variation σ was calculated as a standard deviation of relative extensions:

σ =

√∑n
i=1 ε

2
k

n
, (6.5)

where n is a number of images (measurements) and εk is a relative extension of the kth mea-
surement, calculated as the ratio of the extensometer extension to its length, i.e., strain.

N = 4 px
H = 2.58

N = 6 px
H = 3.44

N = 8 px
H = 4.06

N = 12 px
H = 4.86

N = 20 px
H = 5.90

N = 36 px
H = 7.05

N = 68 px
H = 8.32

N = 132 px
H = 9.63

Figure 6.5: Studied subsets of various size, N × N , and their entropy, H , being a measure of
gray intensity randomness.

The relationships between the both user-defined DIC parameters, N and κ, and the system
performance in terms of σ and ν are presented in Figures 6.6 and 6.7. First, κ = 32 px−1 was
fixed and the influence of N was tested. Next, N = 36 px was fixed and the same procedure
was repeated for κ.

Larger subsets contribute to a lower oscillation around the true (zero) extension, and the
measurement variation, σ, was very small, around 0.8 × 10−5, and almost constant for N >
70 px. However, increasing the subset size, N , came at a cost of higher demands on CPU
resulting in a lower sampling frequency, ν, and the measured shift was averaged over a larger
area. The value of ν was dependent on the CPU speed.

An opposite trend was observed regarding κ. For values of κ < 4 px−1 there was no
oscillation in extensions and σ = 0. The measurement variation stabilized for κ > 40 px−1 at
σ ≈ 1.5 × 10−5. The impact of κ on ν was similar to the impact of N . With increasing κ, ν
decreased exponentially and its value was also dependent on the CPU speed.

It may be concluded that for the hardware used and the experimental setup considered here,
the optimum setting of the image registration parameters is N ≈ 40 px and κ ≤ 4 px−1 if large
displacements are anticipated or κ ≥ 60 px−1 for measurement of small displacements where
setting of high κ makes sense. The measurement error, σ, appears to be constant beyond these
thresholds.
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Figure 6.6: Relationship between the subset size and the measurement variation of results (left)
and the maximum sampling frequency (right); the required subpixel accuracy was fixed at
κ = 32 px−1.
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Figure 6.7: Relationship between the required subpixel accuracy and the measurement variation
of results (left) and the maximum sampling frequency (right); the subset size was fixed at
N = 36 px.
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6.2.2 Experimental verification

A periodically displaced steel plate with a sprayed random pattern was observed and the ver-
tical motion evaluated in order to verify the measurement procedure thoroughly. The periodic
harmonic motion was accomplished using a hydraulic dynamic actuator. The camera was po-
sitioned perpendicularly to the observed plane at a distance of 60 cm. The camera was turned
on 5 minutes before the experimental testing in order to reach a saturation temperature and
eliminate the error due to the camera self-heating [195]. The correlation parameters were set as
N = 80 px and κ = 60 px−1. The displacements were recorded during 10 sine waves having
an amplitude of 0.93 mm and frequency 0.017 Hz. The images were saved during the analysis,
thus significantly reducing the sampling frequency to approximately 0.5 Hz.

The saved images were collected and used after the test for a calculation of displacements
using a DIC software Ncorr. This software was thoroughly tested and validated using distorted
synthetic images and analysis of experimental datasets from the SEM 2D-DIC challenge [81,
196]. Ncorr was selected for benchmarking because it is robust, open-source, and accepted by
a scientific community [197]. However, the algorithms implemented in Ncorr, based on subset
matching in the spatial domain, do not allow for the real-time analysis.

The measurement was carried out twice, separately for the modes for small and large dis-
placements, recall Section 6.1.2. The comparison of vertical displacement, y(T ), evaluated
using RTCorr and Ncorr and deviations from the theoretical curves, ∆y, are provided in Fig-
ures 6.8 and 6.9. The theoretical curves follow the prescribed harmonic displacement function
defined as

y(T ) = 0.93 sin(2π 0.017T ). (6.6)

There was an almost perfect overlap of curves (theoretical according to Eq. (6.6)) and out-
comes of Ncorr and real-time measurement using RTCorr), manifesting a high accuracy of the
real-time correlation procedure. The ∆y plots provide more detailed information about the
measurement errors. The encountered discrepancy, in order of 10−5 m, between the measured
vertical displacements, both by RTCorr and Ncorr, is attributed to asynchronous motion of the
observed specimen with respect to the prescribed displacement according to Eq. (6.6). More
importantly, there is an agreement between RTCorr and Ncorr. The possible error cumulation
was not observed in the case of RTCorr measurement in large-displacement mode. However,
compared to the small-displacement mode, the disagreement between Ncorr and RTCorr was
slightly increased.

6.2.3 Outdoor measurements

RTCorr was primarily developed for and tested during laboratory measurements, but it can be
exploited for structural health monitoring [198, 199]. To demonstrate that capability, exper-
imental measurements of deflections of bridges under traffic loading were carried out. Such
measurements enabled continuous monitoring without affecting the traffic.

It must be noted that such outdoor measurements have to be thoroughly prepared, especially
in the case of long-term monitoring. The accuracy of DIC measurements carried out outdoors
can be more likely compromised due to temperature changes, camera motion, turbulences, or
poor illumination [65].
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Figure 6.8: Comparison of theoretical displacement and results from RTCorr and Ncorr (top)
and deviations from a theoretical curve (bottom) in the small-displacement mode.
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Figure 6.9: Comparison of results from RTCorr and Ncorr (top) and deviations from a theoret-
ical curve (bottom) in the large-displacement mode.
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The displacements were recorded from a 11 m distance, yielding a scaling factor of 1.16 px/mm.
The sampling frequency was set to 5 Hz for 1 h and the DIC parameters as N = 70 px and
κ = 20 px−1. The measurement setup is presented Figure 6.10 and the results in Figure 6.11.
Even though there are no reference data, the maximum deflections correspond to predictions
based on previous measurements. Moreover, there is a proportionality between the train weight
and measured deflections. The high sampling frequency allowed to capture also the bridge
vibrations after its unloading.

Camera

Observed pattern

Camera

Figure 6.10: Real-time measurement of a steel bridge deflection under a 40 t train engine using
RTCorr.
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Figure 6.11: Bridge deflection due to loading by a passing train measured near the midspan.





Chapter 7

Off-line mode measurements

It is indisputable that the simplicity and low computational cost of the image registration al-
gorithms employed for displacement measurements in this work make the method suitable
for real-time measurements, especially when using minified equipment. However, the same
algorithms are suitable also for batch processing of large amount of data, e.g., generated by
long-term measurements or, typically, by high-speed cameras. High speed imaging opens up a
range of new possibilities to tackle dynamic or impact behavior of structures, but the basic prin-
ciple of DIC in itself is unchanged. Yet, many software tools are unable to process hundreds
of thousands images that can document a dynamic event. Here, the advantage of using com-
putationally efficient subpixel registration algorithms implemented in the developed software
RTCorr is presented using two examples—recording minute vibrations due to sound excitation
on over 80,000 images and modal analysis of an aircraft wing from a video sequence.

7.1 Audio recovery

The reproduction of the experiment presented by Davis et al. [200] demonstrated offline capa-
bilities of the developed algorithms for measurement of displacements. Davis et al. proposed a
passive method to recover audio signal from a sequence of images recorded using a high-speed
camera. By detecting tiny vibrations of an object excited by a sound, the displacements can be
converted back into an audio signal.

Such an approach of audio recovery is based on the principle of traditional microphones
that convert motion of an diaphragm into an electrical signal. Here, a microphone diaphragm
was replaced by a withered part of a potted plant’s leaf (Figure 7.1), having a rich texture
suitable for image registration. The images were taken using an iX i-SPEED 726 high-speed
camera equipped with CMOS sensor with a 13.5 µm pixel size at a frame rate of 20,000 fps
and 1344×978 px resolution.

The experiment fully tested the proposed methodology for calculation of local displace-
ment fields since over 4 second recording at 20,000 fps yielded an enormous amount of images
to be processed and commonly used DIC software, such as Ncorr or VIC 2D, cannot han-
dle such an amount of data. On the contrary, calculation of 50×50 subset’s displacements
with 1/200 px accuracy took only about 7 minutes using the Lenovo T480 laptop specified in
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Section 6, Table 6.1. Since the resulting 1D signal obtained in the form of the subset displace-
ments was correlated with the input pressure of sound waves, it could be played and analyzed
as sound.

Figure 7.1: Experimental setup: leafs of potted plant excited by a sound from a loudspeaker; a
powerful LED illumination is required for high frame rate recording.

At first, synthetic tones of 200, 400, 600, 800, and 1000 Hz were played by a loudspeaker to
validate to procedure. It can be seen from the spectral analysis presented in Figure 7.2 that the
frequency peaks of the reproduced sound match those played by the loudspeaker. The observed
potted plant’s leaf resonated with a different normalized amplitude for each frequency.

After successful validation, a piano solo of the Beethoven’s famous composition Für Elise
was played by the loudspeaker and the leaf vibrations were monitored. The sound reproduced
from the leaf displacements can be easily recognized by a human and the similarity is demon-
strated by a sound spectra plot shown in Figure 7.3. The presented audio recovery procedure is
sensitive to noise at low frequencies (lower than 300 Hz). This noise can be attribute to move-
ment of the camera induced by a cooling fan. Vibrations of the leaf due to draft were eliminated
by a high-pass filter eliminating all displacements with a frequency lower than 20 Hz.

7.2 Modal analysis

Conventionally, mode shapes of structures have been extracted using contact-based sensors
such as accelerometers [201, 202]. Even though accelerometers can be easily attached and
are capable of providing high sampling rates and high signal-to-noise ratio [203], they cannot
provide full-field data and given their weight, they may constitute a significant component of a
measured structure, especially in case of small/lightweight vibrating bodies. These drawbacks
have been eliminated by introduction of DIC-based measurements, which also allow retrospec-
tive evaluation of dynamic events from a sequence of images [121, 204–210].
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Figure 7.2: Comparison original and recovered synthetic tones of 200, 400, 600, 800, and
1,000 Hz using spectral analysis.
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Figure 7.3: Comparison original and recovered beginning of the Mozart’s Für Elise spectral
analysis.
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Example of such a measurement using subpixel registration algorithms is provided in Fig-
ure 7.4. Here, a slow-motion recording of an Airbus A380 aircraft taking off at the Düsseldorf
Airport, Germany, was used for the analysis of wing vibration. The video was recorded at the
sampling rate of 1,000 fps. The use of efficient image registration algorithms allowed to carry
out the modal analysis in less than 10 s of computational time using the Lenovo T480 laptop
specified in Section 6, Table 6.1.

The first natural frequency of bending vibration identified by registration of subsets’ dis-
placement was equal to 8.85 Hz, which is in agreement with numerical calculations by Ghaith
and Haque [211]. Their study carried out using ABAQUS software described the dynamics of
an Airbus A380 wing; the numerical model predicted the first natural frequency of 8.082 Hz.
However, this value can be influenced by the amount of fuel carried by the wing tanks.

uIy,max = 148 mm

Figure 7.4: Upscaled first mode amplitudes at monitoring subsets with a maximum first-mode
deflection uIy,max = 150 mm measured at the end of an Airbus A380 wing.

Conducting a modal analysis under operating conditions offers involvement of sometimes
hardly anticipated excitation. In such a case, besides affecting the dynamics of the system, use
of accelerometers presents an additional obstacle since these delicate devices require careful
handling and usually also connection to a PLC unit. The use of efficient algorithms for evalu-
ation of natural frequencies from a video stream can provide a useful tool in the area of health
monitoring or quality control as any deviations in dynamic behavior can indicate a presence of
defects [212, 213].



Chapter 8

Conclusions and Final Remarks

The demand for DIC-based measurement system capable of real-time evaluation of displace-
ments led to development of solutions presented in this thesis. Such solutions, usually ex-
ploited outdoors for structural health assessment, pose specific requirements on both hardware
and software. Here, an optical system for real-time measurements of displacements offering
an arbitrary number of virtual extensometers was presented. High sampling rates were reached
through an efficient image registration algorithm based on upsampled matrix-multiplication
DFT. A careful performance-focused implementation of this algorithm in an in-house software
allowed to reached sampling frequencies exceeding 60 Hz with a 1/100 px subpixel accuracy.
The software was validated on a series of laboratory and outdoor measurements, exploiting
several measurement techniques for benchmarking to prove the developed software accurate
and reliable.

The hardware was designed and tested for two modes of measurements with different goals
in mind; the performance-focused assembly was intended for real-time measurements with
collection of data at high sampling rates, while the reliability-focused assembly was designed
primarily to withstand long-term exposure to variable weather conditions and possibly a lack of
electricity from the grid. Both solutions were thoroughly tested both in laboratory and outdoor
conditions.

The proposed method is robust and very fast, but an experimentalist using the proposed
algorithms must be familiar with their limitations:

• Large translations of a subset within a single time-step (between two frames/images) are
not allowed because correlation with a reference frame/image to seek for initial location
of translated subsets with an integer-pixel accuracy was eliminated from the process.

• Large deformations of a subset in a single time-step are not allowed because subsets are
assumed to be undeformable.

These restrictions allow efficient evaluation of subset translations in a single steps and do not
limit measurements in most applications; when monitoring, e.g., bridge deflections from a
distance, local deformations are negligible and displacements do not exceed the size of subsets
required for a the measurement.
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The developed solution has not gained only the interest of scientific community, as evi-
denced by the growing number of citations in peer-reviewed papers, but also engineers. In
November 2019, deflections were monitored on a highway bridge (Figure 8.1) on a request
of Ředitelství silnic a dálnic (ŘSD) ČR (Directorate of Roads and Motorways Czech Repub-
lic). This proof-of-concept measurement took place near on a 25 m long precast prestressed
concrete bridge on the D5 highway6, near Drahelčice/Rudná (D5-005..1, 3.927 km). Future
measurements for ŘSD ČR are prearranged.

Figure 8.1: Continuous measurement of displacements on a highway bridge near Rudná u
Prahy (frame from a video sequence presented as the measurement output).

6https://youtu.be/54OEy3lDEl4

https://youtu.be/54OEy3lDEl4


Research outcomes

The applicability and usefulness of the research is demonstrated by the outcomes listed below.

Research outcome Relationship to this thesis
Software RTCorr [185] Implementation of the proposed algorithms for real-time DIC

measurement in a single GUI-controlled tool
Article #1 Antoš et al. [58] Assessment of stochastic patterns for DIC
Article #2 Antoš et al. [214] Study on the practical use of the RTCorr software
Article #3 Prošek et al. [215] Long-term shrinkage measurement using the developed algorithm
Article #4 Nežerka et al. [216] Monitoring of shrinkage cracking using the developed algorithms
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