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tations and advice during my participation in his projects and during writing this
thesis. I would like to thank Jan Trejbal for his contribution during the research.
Finally, I would like to thank my family and friends who supported me during my
studies.



iii

Honesty Declaration

I declare that this master thesis has been carried out by me and only with the use
of materials that are stated in the literature sources.

April 19th, 2024
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Abstract

Improper sorting of construction and demolition waste (CDW) leads to significant
environmental and economic implications, including inefficient resource use and
missed recycling opportunities. This thesis adrress this by developing a machine-
learning-assisted procedure for recognizing CDW fragments using an RGB cam-
era. Our approach uniquely leverages selected feature extraction, enhancing clas-
sification speed and accuracy. We employed three classifiers: convolutional neural
network (CNN), gradient boosting (GB) decision trees, and multi-layer perception
(MLP). Notably, our method’s extraction of selected features for GB and MLP
outperformed the traditional CNN in terms of speed and accuracy, especially for
challenging samples with similar textures. Specifically, while convolution resulted
in an overall accuracy of 85.9%, our innovative feature extraction approach yielded
accuracies up to 92.3%. This study’s findings have significant implications for the
future of CDW management, offering a pathway for efficient and accurate waste
sorting, fostering sustainable resource use, and reducing the environmental impact
of CDW disposal. Supplementary materials, including datasets, codes, and models,
are provided, promoting transparency and reproducibility.
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Abstrakt

Nesprávné třı́děnı́ stavebnı́ho a demoličnı́ho odpadu (CDW) vede k významným
environmentálnı́m a ekonomickým důsledkům, včetně neefektivnı́ho využı́vánı́ zdrojů
a nevyužitı́ možnostı́ recyklace. Tato práce řešı́ tento problém vývojem postupu
pro rozpoznávánı́ fragmentů CDW pomocı́ RGB kamery za použitı́ strojového
učenı́. Náš přı́stup jedinečným způsobem využı́vá extrakci vybraných vlastnostı́,
čı́mž zvyšuje rychlost a přesnost klasifikace. Použili jsme tři klasifikátory: kon-
volučnı́ neuronovou sı́ť (CNN), rozhodovacı́ stromy s gradientnı́m posilovánı́m
(GB) a vı́cevrstvý perceptron (MLP). Je pozoruhodné, že extrakce vybraných vlast-
nostı́ našı́ metodou pro GB a MLP překonala tradičnı́ CNN z hlediska rychlosti
a přesnosti, zejména u náročných vzorků s podobnými texturami. Konkrétně,
zatı́mco konvoluce vedla k celkové přesnosti 85,9%, náš inovativnı́ přı́stup k ex-
trakci vlastnostı́ přinesl přesnost až 92,3%. Výsledky této studie majı́ významný
dopad na budoucnost nakládánı́ s CDW, protože nabı́zejı́ cestu k efektivnı́mu a
přesnému třı́děnı́ odpadu, podporujı́ udržitelné využı́vánı́ zdrojů a snižujı́ dopad
likvidace CDW na životnı́ prostředı́. K dispozici jsou doplňkové materiály, včetně
souborů dat, kódů a modelů, které podporujı́ transparentnost a reprodukovatelnost.
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The complete code developed during the work on this thesis is available on codeocean capsule.

https://codeocean.com/capsule/5777871/tree/v1
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Chapter 1

Introduction to Machine Learning for
Classification Tasks

Machine learning (ML) has experienced a massive boom over the last few years as it appears
helpful in various industries and parts of life. Based on the data report provided by the AI
Index Steering Committee [1], it can be concluded that there is great interest in ML. Figure 1.1
demonstrates that artificial intelligence (AI) has become popular within the research commu-
nity as well as in different fields of engineering including geodesy [2, 3], waste management [4],
and commercial activities (Figure 1.2). The exponential growth started around 2013, however,
even in 2005 the number of papers was double that in 1998. AI provides us with fast methods of
achieving goals that would otherwise be tedious. While the prospects of these technologies ap-
pear promising, users must possess a comprehensive understanding of the algorithms to select
the most appropriate one for their specific requirements, thereby optimizing outcomes. This
section covers ML algorithms’ fundamentals and will describe their pros and cons. In addition,
algorithms that have been used in this study will be given special attention so they can be fully
understood.

ML algorithms are commonly divided into three basic types: (i) supervised, (ii) unsuper-
vised, and (iii) reinforcement learning.

1.1 Supervised learning

Supervised learning is a subcategory of ML characterized by using labeled data to train an
algorithm. Labeled data comprise samples annotated with the correct output, facilitating the
algorithm’s learning process. In this study, a material name was paired with each image of a
material. Labels can be of either a quantitative nature or represent a category. Considering that
we can only receive those two types of labels, supervised learning is a well-suited solution for
basically three types of tasks [5]: (i) classification, (ii) regression, and (iii) ranking.

Classification tasks are typically distinguished as binary, a multi-label classification, and
several unique labels characterize it. The classification task aims to predict a category label
characterized by discrete values based on input data. Sorting construction and demolition waste
(CDW) is a multi-label classification problem as its goal is to distinguish a waste of different
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Figure 1.1: Number of papers published with keywords of AI, artificial intelligence, ML, and
deep learning by year based on the data from Web of Science.
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Figure 1.2: Anual global corporate investment in AI based on data from AIIndex report
2023 [1].

https://www.webofscience.com/wos/woscc/summary/46df28cc-536d-4823-838e-003efcb16d45-cdd9fa21/relevance/1
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materials, i.e., classify material so it can be sorted and efficiently reused. The core idea of
a classification task is to recognize a pattern that distinguishes between labels. Multiple ML
models used for classification tasks have been used over time. Among the most used there are
the following models:

• Decision trees

• Random forests

• Support vector machines (SVM)

• K-nearest neighbors

• Neural networks/deep learning

• Gradient boosting machines

This study employs three distinct approaches to address the specified task. Application of
gradient boosting decision tree, multi-layer perceptron (MLP) [6] a type of artificial neural
network (ANN), and convolutional neural network (CNN) [7] a foundational algorithm within
deep learning (DL). A gradient boosting (GB) decision tree combines decision tree algorithms
with GB techniques, and its mechanism will be described further. Regression tasks and their
application are beyond this study’s scope and will not be described in depth. It should be noted
that, unlike classification tasks, regression tasks typically involve labels represented by real
values [5].

1.1.1 Decision trees

The structure of a decision tree model helps to understand its principle (Figure 1.3). This
Diagram consists of three types of nodes and branches. The root node represents the first
decision node in a model. A decision node is a node that contains an if-statement that tests
given data for a defined property and leads the algorithm toward another decision node or a
leaf node. A leaf node is a node where a label is assigned to the data. Branches represent the
outcome of a decision node, and they can represent both positive and negative outcomes of a
decision node. During the classification process, data are tested in decision nodes and assigned
to a leaf node that represents a label. However, it is even more critical to understand the process
of training a decision tree model.

The decision tree tries to find the best if-statement for a node by evaluating how good a split
was. Various indicators are used for this purpose, such as the Gini index, Shannon entropy,
chi-square, and reduction in variance. Scikit-learn decision tree model [8] have been used in
this study, and since this model uses mostly the Gini index and Shannon entropy to decide
how good the split was, those will be described mathematically. If a target is a classification
outcome taking on values 0, 1, . . . , k − 1 for node m, let

pmk =
1

nm

∑
y∈Qm

I (y = k) (1.1)
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be the proportion of class k observations in node m. If m is a decision node, predict probe for
this region is set to pmk, where Qm represents data at node m with nm samples. The Gini index
is then defined as

G (Qm) =
∑
k

pmk (1− pmk) (1.2)

and the Shannon entropy is defined as

E (Qm) = −
∑
k

pmk log (pmk) . (1.3)

Root Node

Decision Node

Leaf Node
Yes

Leaf NodeNoYes

Decision Node

Leaf Node
Yes

Decision Node

Leaf Node
Yes

Leaf NodeNo

No

No

Figure 1.3: Diagram with fundamental parts of a decision tree model.

Every model has its pros and cons. Decision trees are renowned for their interpretability
as they can process both categorical and numerical data. They are versatile, and we can use
them both for classification tasks and regression tasks. On the other hand, many decision tree
models employ greedy algorithms, selecting the optimal split for the current node, potentially
compromising the effectiveness of future splits. Decision tree models are susceptible to over-
fitting, and they may be slow to make predictions when it comes to vast and complex datasets.
To mitigate the limitations associated with greedy algorithms, GB techniques were employed
in the algorithms utilized in this study.

1.1.2 Gradient boosting

GB is a powerful machine learning technique that constructs prediction models using an en-
semble of weak predictive models, typically decision trees. This approach builds the model
incrementally in a stage-wise fashion and optimizes an arbitrary differentiable loss function,
thereby enhancing the model’s generalization capability. The fundamental principle of GB
involves sequentially adding predictive models to the ensemble, each designed to correct its
predecessor. Let f (x1, x2, . . . , xn) be an n-variable function. Gradient ∇ is then defined as:

∇f =

[
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

]
(1.4)
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Applying the gradient ∇ to a multivariable function indicates the direction of the steepest
ascent within the function’s domain. Each predictor is trained using the gradient of the loss
function. Building a prediction model begins with a base model, usually a very simple model,
and computes residuals. Subsequent decision trees are then trained to predict these residuals,
and those residuals are added to the earlier models’ predictions, making the final predictions
more accurate. This procedure is repeated multiple times until stopping criteria are met, usually
several trees or tolerable errors in predictions. There are numerous GB algorithms, among the
most used: (i) XGBoost [9], (ii) LightGBM [10], (iii) CatBoost [11], (iv) AdaBoost [12],
(v) HistoGradient Boosting [8]. The effectiveness of GB is attributed to its broad applicability
and adaptability to various loss functions, making it a popular choice among models. However,
careful tuning of hyperparameters and controlling overfitting are essential for leveraging the
full potential of GB models to deliver highly accurate predictions.

1.1.3 Artificial neural networks and deep learning

ANN is a computational model inspired by the functioning of the human brain [13]. The
human brain consists of neurons and their connections, forming a biological neural network.
An ANN is comprised of units termed ‘neurons’ with associated weights and biases facilitating
information processing. An ANN is composed of multiple layers: an input layer, one or more
hidden layers, and an output layer (Figure 1.5). DL’s definition is unclear. Generally, ANN
with multiple hidden layers can be considered a DL algorithm. DL is typically characterized
by layered structure and its ability to learn feature hierarchies without human intervention.
The model learns to identify the right features in data by itself, progressing through layers to
understand increasingly abstract concepts.

Before delving into the description of these concepts, it is essential first to define the nota-
tion of ANN elements. The general notation for activation values is a(l)i , where the subscript i
denotes the neuron’s position within its layer, and the superscript l denotes the layer of the neu-
ron. It is important to note that the superscript represents layer indexing, not exponentiation.
The notation for weights is w(l)

j,k, where j denotes the position of the originating neuron within
its layer, k denotes the position of the target neuron within its layer, and l denotes the layer to
which the weight is applied. Notation of biases is similar to the notation of an activation value,
b
(l)
i is the bias for a neuron i in a layer l. Activation value is a value distributed by its neuron as

an output into the next layers. Activation values are calculated as

a
(l)
i = σ

(
n−1∑
j=0

a
(l−1)
j w

(l)
j,i − b

(l)
i

)
, (1.5)

where σ is an activation function that maps input values to the interval (0, 1), where n represents
the number of neurons in a layer l − 1. It is important to note that there are multiple activation
functions, including the sigmoid function, the rectified linear unit (ReLU) function, and the
hyperbolic tangent function (tanh), each offering distinct characteristics beneficial for different
ANN configurations. Weight represents how strong the connection between two neurons is and
is applied while calculating the activation of a target neuron. A bias is a constant added to the
product of activations and weights, shifting the activation function along the y-axis, enabling
the model to fit the data better. The process of classification with ML algorithms works on that
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principle. We calculate all the activation values, and once we reach an output layer, the neuron
with the highest activation value in the output layer is considered the result. During training,
the goal is to identify the optimal set of parameters (weights and biases) that maximize the
model’s accuracy on the validation dataset.

At the beginning of the training process, all weights and biases are initialized to random
values before input into the ANN alongside the training data. The efficiency of those weights
and biases is evaluated using the cost function. Let aci denote the calculated activation values in
the output layer, and let ati denote the target activation values (also known as the ground truth).
The cost value for one training example is then calculated as

C =
n−1∑
i=0

(
aci − ati

)2
. (1.6)

The cost value for the entire training dataset is computed as the mean of all individual costs.
It follows that greater accuracy in the results correlates with a lower cost value. Since the cost
value is derived as the mean of all individual costs, minimizing this function is expected to
yield improved accuracy across the training dataset. To minimize the function most efficiently,
weights and biases are adjusted in the direction opposite to the gradient, denoted by −∇ defined
by Equation 1.4. Gradient estimation is predominantly performed using the backpropagation
method, which has demonstrated efficiency across a wide range of tasks [14].

1.1.3.1 Backpropagation

Backpropagation employs the chain rule [15] in ANNs to propagate errors backward from the
output to input layers. Consider the notation for the weighted sum component of the activation
value as defined in Equation (1.5)

z
(l)
j =

n−1∑
j=0

a
(l−1)
j w

(l)
j,k − b

(l)
k . (1.7)

The chain rule quantifies the influence of weight adjustments on the cost value. On Fig-
ure 1.4, we can see that weight w(l)

j,k influence z(l)j directly, which cause change in a
(l)
k value and

this change in a
(l)
k consequently affects the cost value, Ck. This allows to calculate change in

Ck caused by change to w
(l)
j,k.
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∂Ck

∂w
(l)
j,k

=
∂z

(l)
j

∂w
(l)
j,k

∂a
(l)
k

∂z
(l)
j

∂Ck

∂a
(l)
k

∂Ck

∂a
(l)
k

= 2
(
a
(l)
k − yk

)
∂a

(l)
k

∂z
(l)
j

= σ′
(
z
(l)
j

)
∂z

(l)
j

∂w
(l)
j,k

= a
(l−1)
j

This differentiation yields the final expression for the partial derivative of the cost with
respect to a weight

∂Ck

∂w
(l)
j,k

= a
(l−1)
j σ′

(
z
(l)
j

)
2
(
a
(l)
k − yk

)
. (1.8)

This way, the influence of the change of w
(l)
j,k to the cost of one training example Ck is

computed. Since the cost value is of one iteration for the training dataset is computed as an
average of costs for all training examples, its derivative ∂C

∂w
(l)
j,k

requires averaging expression

above for whole training dataset. This is formally expressed as

∂C

∂w
(l)
j,k

=
1

ne

ne−1∑
k=0

∂Ck

∂w
(l)
j,k

, (1.9)

where ne is number of training examples. Using the same idea as we have used for partial
derivative ∂Ck

∂w
(l)
j,k

, we can then express partial derivatives with respect to b
(l)
k and a

(l−1)
j .

∂Ck

∂b
(l)
k

= 1σ′
(
z
(l)
j

)
2
(
a
(l)
k − yk

)
(1.10)

∂Ck

∂a
(l−1)
j

= w
(l)
j,kσ

′
(
z
(l)
j

)
2
(
a
(l)
i − yk

)
(1.11)

Iterating through the ANN in reverse order allows for the computation of the cost function’s
sensitivity to all weights and biases.

1.1.4 Multi-layer perceptron (MLP)

The MLP is a fundamental ML algorithm from the class of ANNs characterized by multiple
fully connected hidden layers of neurons between the input and output layers. Those hidden
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Figure 1.4: Chain rule application for computing cost function of a single neuron.
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Figure 1.5: ANN consisting of 4 layers with applied general notation.

layers allow MLPs to capture complex nonlinear relationships in data by leveraging multiple
layers of computation. This capability and MLPs wide range of use led to the decision to
implement this algorithm for CDW recognition. The architecture of an MLP is often described
by the number of neurons in each layer (hidden layer sizes in scikit-learn MLPClassifier [8]),
with the connectivity pattern typically being fully connected. This means every neuron in one
layer connects to every neuron in the subsequent layer.

Evaluation of data and training of the MLP is achieved by the algorithms described in
Section 1.1.3. While powerful, MLPs come with challenges, such as the risk of overfitting,
especially with very deep networks or insufficient data. Techniques such as dropout or early
stopping come in handy to overcome those limitations. Early stopping is a method of regular-
ization used to avoid overfitting in ANN training. It involves monitoring model performance on
a validation dataset after each epoch. If the model’s performance on a validation dataset starts
to deteriorate (validation error increases or stops decreasing for several epochs). It is possible
to save the model after every epoch to choose the best model that is not overfitted. Furthermore,
machine learning frameworks and their models come with multiple hyperparameters (number
of neurons in each hidden layer described above, learning rate, regularization, and others). De-
spite those limitations, MLPs is one of the DL algorithms, perhaps the most intuitive one. It
illustrates the power of layered ANNs that can work with complex and high-dimensional data.
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1.1.5 Convolutional neural networks (CNN)

Over the last couple of years, DL techniques have made tremendous progress in computer
vision, especially in object recognition [16]. CNNs are a special kind of DL that is particularly
efficient for processing grid-like data such as images. CNNs are mainly known for their high
efficiency in recognizing patterns directly from pixels of images with minimal preprocessing.
CNNs power to recognize patterns directly from images was first shown in an ILSVRC 2012
challenge, where CNN of the name AlexNet achieved a top-5 error rate of around 16.4% while
the runner-up–ANN called SuperVision had a top-5 error rate of around 26.2% [17]. CNNs can
automatically learn spatial hierarchies of features from input images, which is possible using
three main types of layers: convolutional layers, pooling layers, and fully connected layers.

1.1.5.1 Convolutional layers

Formally, for complex-valued functions f, g defined on set Z, discrete convolution (such as
convolution performed in computer vision) of f and g is given by [18]:

(f ∗ g) [n] =
∞∑

m=−∞

f [m] g [n−m]. (1.12)

Convolutional layers are the cornerstone of CNNs, and they play a critical role in CNN’s
ability to learn from grid-like data. Convolution performed on matrices (grids) is well described
in Figure 1.6. For each convolutional layer, there is a kernel filter is applied to the input ma-
trix. Kernel slides across the width and depth of the input matrix, computing the dot product
of kernel values and input values, producing a matrix that gives the responses of convolution at
every position. In convolutional layers, adjusting kernel size, striding, and padding is common
practice. Striding controls the amount of overlap between neighboring regions processed by
the kernel. Padding refers to adding values around the border of the input, ensuring that all
the pixels in the input layer are considered equally and allowing us to control output size. Fol-
lowing convolution, outputs are passed through a non-linear function such as ReLU or similar
functions. This enables a CNN to understand more complex non-linear patterns. Training of
a CNN is done using backpropagation described in Section 1.1.3.1 with a slight change for
convolutional and pooling layers. Each kernel or pooling window in those layers is optimized,
but the principle has not been changed.

CNN’s role is to learn the spatial hierarchies of features from the input data (whole images
for our case). The first layers tend to detect edges, textures, or other simple patterns, and
deeper layers combine those patterns to detect more complex patterns, such as shapes or specific
objects. This principle has been well described in a seminal paper [19] where the authors
presented Figure 1.7. Unlike in fully connected networks, each neuron in a convolutional layer
is connected only to a small region of the input volume. The spatial extent of this connectivity
is equivalent to the filter size. This design takes advantage of the spatial structure in the input
data, ensuring that the network architecture assumes that only nearby input features are relevant
for computing the output. This makes CNNs less prone to overfitting and allows CNNs to be
deeper with fewer parameters. By learning to recognize patterns anywhere in an input image,
convolutional layers give CNNs a significant advantage in tasks involving images and grid-like
data, enabling efficient extraction of features.
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Figure 1.6: The principle of calculating the output of a convolutional layer using the kernel.

1.1.5.2 Pooling layers

There are many challenges to face during the training of CNNs, such as long training time and
overfitting. Pooling layers are usually placed between successive convolutional layers within
CNN architecture. They serve multiple purposes: They reduce the size of the input data for
subsequent layers, drastically reducing computation cost and memory usage of a user, they
help to achieve invariance to minor translations such as small shifts, rotations, etc., which then
resolve in models being more robust to variations in the position of features and they help
with feature aggregation. Max pooling helps aggregate the most present feature in a layer, and
average pooling helps aggregate the average features. Correctly applying pooling layers helps
to abstract higher-level features from the input.

The pooling operation slides a window of a size we can set as a hyperparameter over the
input matrix performing one of the pooling types. For each subwindow in a matrix, one value
is calculated from multiple values (4 for 2×2 window, 9 for 3×3 window, etc.), significantly
reducing the matrix size. Three widely used pooling types are max pooling, average pooling,
and L2 norm pooling. The process of max pooling is shown in Figure 1.8. When using max
pooling, the max value is retrieved from a window and is passed to the output afterward. With
average pooling, the output is calculated as an average value from the window, and with L2
norm pooling, the output value is computed as the square root of the sum of the squares of the
elements in the window.

1.1.5.3 Fully connected layers

In CNNs, fully connected layers serve as a classifier for features extracted using convolutional
and pooling layers. The operational principles of these layers are detailed in Section 1.1.3.
Typically, fully connected layers require vectorized input; however, the output from convo-
lutional and pooling layers is grid-like. To reconcile this discrepancy, the grid-like data are
flattened into a vector form, thus fulfilling the input requirements of the fully connected layers.
This transformation ensures that the spatial information encoded in the grid is converted into a
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Figure 1.7: Visualization of features in a fully trained model, presented in a paper by Zeiler and
Fergus [19].
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format suitable for classification.



Chapter 2

Machine learning algorithms for CDW
classification: convolution versus
extraction of selected features

Based on: V. Nežerka, T. Zbı́ral, J. Trejbal, Machine-learning-assisted classification of con-
struction and demolition waste fragments using computer vision: convolution versus extraction
of selected features, doi: 10.1016/j.eswa.2023.121568

2.1 Introduction

The construction industry has a significant socio-economic role as it generates around 25%
of the global GDP and employs 7% of the population [20]. In the EU, 18 mil. people were
employed in the construction sector in 2020 [21]. However, the sector is responsible for
the enormous consumption of raw materials and large production of waste. Globally, it is
estimated that the construction industry consumes over 30–40% of all natural resources ex-
tracted [22, 23], generates around 25–40% of the total solid waste [24], and emits up to 25%
of anthropogenic CO2 [25]. In 2020, the production of CDW in the EU was estimated to be
around 747.3 mil. tons, which amounts to approximately 1685 kg per capita1.

In order to pursue sustainable development, it is imperative to manage waste in a prudent
and cost-effective manner and adopt the principles of circular economy [26, 27]. Following this
direction, the European Parliament and the Commission issued Directive No 98/2008 which
required the EU member states to increase the overall recycling of waste to at least 70% by
weight from 2020. Even though the rate of CDW recycling in the EU is almost constant, at
about 90% on average2, the lion’s share is downcycled. At the global scale, rapidly developing
countries, such as China with 2 bn tons/year, are even bigger CDW producers than all the EU
states combined [28].

The most commonly recycled CDW materials, besides soils, are concrete and ceramics,
mostly used for embankments, backfills, fillings, or beddings under foundation slabs or pavings.

1https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/bar
2https://ec.europa.eu/eurostat/databrowser/view/cei_wm040/default/table

https://doi.org/10.1016/j.eswa.2023.121568
https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/bar
https://ec.europa.eu/eurostat/databrowser/view/cei_wm040/default/table
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Less frequently, the recycled fragments are used as aggregates in the production of new con-
crete mixes or the finest fractions as micro-fillers [29, 30, 31, 32]. The major limiting factor
in the crushed CDW valorization in applications such as concrete manufacturing is improper
sorting [33]. Yongbo Su [34] carried out a multi-agent evolutionary game study and concluded
that research into CDW classification holds the greatest potential to promote CDW recycling
and reuse. Davis et al. [35] pointed out that the automatic classification of CDW materials
would significantly reduce the costs associated with sorting.

At the pre-sorting stage, methods exploiting gravitational, magnetic, inertial, electrostatic,
or buoyancy forces are very efficient in separating specific types of materials from a hetero-
geneous CDW mix [36, 37]. Leveraging big data in CDW management offers promising ad-
vancements. Yuan et al. [38] utilized a dataset of 4.27 million truckloads of construction waste
to estimate waste composition based on bulk density. Such techniques can significantly refine
sorting processes and promote sustainable resource utilization.

Despite recent progress in advanced methods based on research into the development of
various sensors (image, spectroscopic, spectral, UV sensitive, etc.) [36, 39], sorting of the re-
maining fragments is at the industrial scale most commonly accomplished manually and cannot
be done properly due to their similarity. Therefore, it is desirable to replace manual sorting with
robotic vision-based technologies such as RGB cameras, hyperspectral imaging, or X-ray sen-
sors assisted with machine learning. This approach has been first employed for the purpose of
municipal waste separation [39, 40, 41, 42] and the extensive development led to the sorting
accuracy exceeding 90% [43].

The robotic vision-based technology has also started to find its way into the CDW sort-
ing [44, 45]. However, automatic CDW recognition encountered its limitations in terms of
accuracy and boundary identification. The latter issue was addressed by Dong et al.[46], who
proposed a boundary-aware model with the ability to distinguish and segment individual ma-
terials within structural debris. CNNs are specialized for image recognition, leveraging their
ability to identify hierarchical patterns in visual data. Their design enables them to dissect im-
ages into components, enhancing classification accuracy, especially in intricate tasks like CDW
sorting. For instance, Xiao et al. [47] utilized CNNs to effectively classify different CDW mate-
rials, underscoring the potential of this approach in the domain. They classified different CDW
materials (wood, brick, rubber, rock, concrete) with an accuracy exceeding 80%. Ku et al. [48]
built a robotic line that automatically recognized and classified the basic materials within CDW
using hyperspectral and 3D cameras with an accuracy of about 90%. Machine-learning classifi-
cation was also employed by Lin et al. [49], who recognized visually different CDW fragments
and achieved an accuracy ranging between 75 and 80%. The closest to our goal is the study by
Hoong et al. [33], who employed neural networks for the classification of recycled aggregates.
They constructed a library of 36,000 images of individual aggregate grains and their model
achieved accuracies of up to 97%.

While previous studies have employed CNN-based models for CDW classification, our re-
search distinguishes itself in two primary ways. Firstly, we focus on the efficient extraction
of features describing the textures captured using ordinary RGB cameras, a method not ex-
tensively explored in prior work. Secondly, we provide a comprehensive comparison between
CNN and other machine-learning models, specifically GB models and MLP, showcasing the ef-
ficacy of feature extraction in enhancing both speed and accuracy. This paper presents a unique
approach to CDW fragment recognition, emphasizing the power of feature extraction. We pro-
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vide extensive datasets, computer codes, and pre-trained models, ensuring our methodology is
transparent, reproducible, and can be built upon by other researchers or industry stakeholders.

2.2 Methodology

The capabilities and limitations of the selected feature extraction methods and machine-learning
models are demonstrated on four types of CDW fragments. These were chosen because they
are the most common fragments found in mixed debris from demolition sites in the Czech
Republic: light-colored aerated autoclaved concrete (AAC), asphalt conglomerates, ceramics
(roof tiles and bricks), and concrete. These materials not only represent a significant portion
of the total waste but also pose a challenge in terms of their similarity, making their accurate
classification crucial for efficient recycling and waste management.

2.2.1 Collection of datasets

The 1920×1280 px images of ∼30–250mm fragments were taken from a distance of about
70 cm using a handheld digital single-lens reflex camera (Canon EOS 70D with a Canon zoom
lens EF-S 17-85 IS USM) in a CDW collection and sorting yard near Kladno, Czech Republic
(Figure 2.1). The images were captured in a shade to minimize variations in illumination and
to ensure consistent image quality. Importantly, the CDW fragments were used in their natural
state from the yard, without any presorting or cleaning, reflecting the real-world conditions
of such waste. In a potential industrial deployment, techniques like air-flow cleaning could
be introduced on conveyor belts to minimize dirt and dust, enhancing the image clarity. The
fragments were placed on the ground while taking the images, or directly on the CDW piles.

Unlike clean structural elements, whose classification has been tackled in other studies [50,
51, 52, 53, 54, 55], recognition of CDW fragments is a more challenging task as their surface
can be contaminated with dust and residues of other materials. Randomly selected samples of
CDW fragments are presented in Figure 2.2, showing similar textures, especially in the case
of AAC and concrete. The complete image datasets used for training of machine-learning
classifiers and validation are open and provided as supplementary material [56].

The acquired image datasets were manually split to individual material classes. The anno-
tated images within each class were divided into training and testing sets in a 4:1 ratio. Since
the shape of fragments cannot be the key for classification and the classifiers were trained to
recognize the CDW textures, 200×200 px regions (image subsets) were manually extracted for
training and testing of the selected classifiers (Figure 2.3). The summary of these training/test-
ing data is provided in Table 2.1.

2.2.2 Extraction of features

Images represent a high-dimensional input space with D = N ×N × C features, where N ×
N is the image subset size (px) and C is the number of color channels (equal to 3). Such
large inputs can be tackled using CNNs, yet reducing the input space by extracting informative
numeric features that describe the CDW texture (Figure 2.4) allows to use simple and efficient
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Figure 2.1: The site for collecting images, a CDW collection and sorting yard near Kladno,
Czech Republic.
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Figure 2.2: Examples of image datasets for the examined CDW materials.

Table 2.1: Summary of extracted 200×200 px image subsets used for testing and training of
selected classifiers.

Material (class) Number of training images Number of testing images
AAC 939 235
Asphalt 902 226
Ceramics 620 155
Concrete 825 206



Machine learning algorithms for CDW classification: convolution versus extraction of
selected features 17

AAC Asphalt

Ceramics Concrete

5 cm 5 cm

5 cm5 cm

200 px

20
0

px

Figure 2.3: Manual extraction of 200×200 px regions (image subsets) used for training and
testing of selected classifiers.

classification algorithms. In this study, we scrutinize the GB and MLP models for such a
classification based on extracted features.

The following metrics are proposed to describe the color and texture of CDW fragments,
reducing the input space to D = 4: (i) mean intensity, (ii) mean intensity of a selected color
channel, (iii) Shannon entropy, and (iv) mean intensity gradient. To calculate these quantities,
local coordinates (i, j) are introduced for image subsets (Figure 2.5). The 3-dimensional matrix
of intensities for individual color channels, I(C, i, j), was reduced to a single-channel matrix
I(1, i, j) ≡ Igray(i, j), representing a gray-scale image, as

Igray(i, j) = 0.299 Ired(i, j) + 0.587 Igreen(i, j) + 0.114 Iblue(i, j), (2.1)

where Ired(i, j), Igreen(i, j), and Iblue(i, j) represent the matrices of intensities for the red,
green, and blue channel, respectively. The weights for individual channels follow luma en-
coding that reflects different human vision sensitivity to particular colors.
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Figure 2.4: Visualization of the image subset characteristics for individual materials (classes)
as pairwise scatter plots; marginal distributions of each feature for each class are plotted on the
diagonal.

2.2.2.1 Mean intensity

Mean intensity, Igray, is strongly influenced by the illumination of a captured scene and cannot
be considered a reliable feature if constant illumination is not ensured for all (training, testing,
and classified) images. Since this proof-of-the-concept study is intended as a cookbook for
CDW fragments recognition on conveyor belts in an indoor environment, Igray can be consid-
ered as one of the relevant features for classification and is calculated as

Igray =
N∑
i=1

N∑
j=1

Igray(i, j)

N2
. (2.2)
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Figure 2.5: Local coordinates (i, j) for a subset of pixels (right) arbitrarily located within an
image of a CDW fragment (left).

2.2.2.2 Mean intensity of red color

The color distribution is one of the key features and many machine-learning models for ma-
terial recognition were based purely on color-based classification [51]. It was found during
a preliminary analysis that for CDW materials, it is sufficient to focus on the predominance
of a specific color. Given the orange/reddish color of ceramic fragments, the mean intensity
of the red channel, Ired, relative to the mean intensity (brightness) was selected as the most
appropriate color-related label and its value was calculated as

Ired =
N∑
i=1

N∑
j=1

Ired(i, j)

N2

1

Igray
. (2.3)

2.2.3 Shannon’s entropy

Many distinct CDW materials have similar colors and color-based labeling may fail [52, 57, 58].
To evaluate the randomness of a texture pattern as an additional feature, Shannon’s entropy
appears to be the most easy-to-calculate measure [59, 60, 61]. It was first proposed by Claude
Shannon in 1948 to evaluate the average level of uncertainty in a signal as [62, 63]

H = −
255∑

Igray=0

P (Igray) log2P (Igray), (2.4)

where P (Igray) ∈ [0, 255] (8-bit images) is the frequency of gray pixels’ intensity. High values
of H indicate higher uncertainty (randomness) of the signal (image).
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2.2.3.1 Mean intensity gradient

Mean intensity gradient (∇I) was proposed by Pan et al. [64] as an indicator of stochastic
pattern quality in regard to digital image correlation measurements. It evaluates the frequency
and intensity of irregularities within an image. Such a measure is directly related to the texture
roughness, being another crucial feature used for material classification [65]. In this study, the
mean intensity gradient was calculated as

∇I =
N∑
i=1

N∑
j=1

|∇Igray(i, j)|
1

N2
, (2.5)

where |∇Igray(i, j)| =
√

Ii(i, j)2 + Ij(i, j)2 is the modulus of local intensity gradient and Ii
and Ij are the i-directional and j-directional derivatives of Igray(i, j) at each pixel location
(i, j). The differentiation was accomplished using a Sobel operator with a 3×3 kernel [66].

2.2.4 Classifiers

The machine-learning models used for classification are only briefly introduced in the following
sections, along with a presentation of input parameters for each model. Detailed descriptions
and analyses of the models are beyond the scope of this paper. The curious reader is referred
to comprehensive books on machine learning such as ones by Geron [67] and Murphy [68].

The choice of classifiers in this study was driven by the aim to span a spectrum of algorith-
mic complexity and to capture the strengths of different types of models. Specifically:

1. GB is renowned for its efficiency in classification tasks. It excels in handling structured
data and can seamlessly navigate the non-linear relationships between features, making
it a robust choice for our dataset [69].

2. MLP, as a basic form of artificial neural networks (ANNs), bridges the gap between
traditional machine learning and deep learning techniques [70]. Its inclusion allowed us
to gauge the efficiency of a simpler neural network architecture in the context of CDW
recognition.

3. CNN was incorporated as a benchmark due to its inherent layered analysis capabilities.
By automatically extracting features, CNNs detect edges and intricate patterns. Its per-
formance provides insights into how deep learning techniques interpret the visual features
in the CDW fragments.

The performance of individual classifiers was tested on a custom-built desktop computer
equipped with an Intel 4 core i3-8350K CPU, 16 GB RAM, 250 GB SSD hard drive, Win-
dows 10 operating system, and Python 3.10.9. The Python codes and pre-trained models are
provided along with this paper [71].

2.2.4.1 Gradient boosting

GB is a machine learning algorithm that typically uses decision trees [72] as its base mod-
els [73]. The decision tree is a flowchart-like tree structure where each internal node tests an
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attribute, and the connected branches represent an outcome of the test. Analogically to leaves,
the terminal nodes hold class labels [74].

At each iteration, GB trains a weak decision tree model on the residual errors between the
true and predicted labels of the previous iteration. The final prediction is made by adding up the
predictions of all the decision trees, where the contribution of each tree depends on its weight,
determined by the improvement in the loss function after adding the tree to the ensemble. The
loss function is minimized using gradient descent. The algorithm usually outperforms random
forest classifiers in terms of speed and accuracy of the predictions [75, 76].

The GB classifier used in this study was implemented in the Scikit-Learn v.1.1.3 Python
package. Standardization of features was performed using the preprocessing.StandardScaler
class. Cross-validation was accomplished using the model selection.StratifiedShuffleSplit class
that provides randomly selected indices to split datasets into test/train data and preserves the
percentage of samples for each class. The input parameters for the ensemble.GradientBoostingClassifier
model class were defined as summarized in Table 2.2. The optimum parameters were selected
based on the prediction accuracy and speed. The optimization was done using the Scikit-learn’s
model selection.GridSearchCV class that provides an exhaustive search over specified values
of model parameters (learning rate ∈ [0.2, 0.8], maximum depth ∈ [3, 5], and a number of
estimators ∈ [100, 200]). Other input parameters were kept in their default settings.

Table 2.2: Summary of input parameters for the GB classifier implemented in Scikit-Learn
v.1.1.3 (ensemble.GradientBoostingClassifier model class).

Input parameter Keyword argument Value Note
Random state random state 0 Fixing the random state ensures deterministic be-

havior during fitting
Learning rate learning rate 0.4 Learning rate shrinks the contribution of each tree
Maximum depth max depth 4 Maximum depth of individual regression estima-

tors, limiting the number of nodes in decision trees
Number of estimators n estimators 125 Number of boosting stages to perform

2.2.4.2 Multi-layer perception

MLP is a type of artificial neural network that consists of an input layer, a specified number of
hidden layers, and an output layer [77, 78]. The input layer represents the features of the input
data, while the output layer represents the predicted probability for all classes. The hidden
layers are used to learn the non-linear transformations of the input features that lead to the final
prediction. In our implementation, the MLP model consists of a single hidden layer; this hidden
layer consists of neurons, where each neuron applies a weighted sum of the input features and
a bias term, followed by an activation function, such as sigmoid or hyperbolic tangent (tanh).
The weights and biases are learned through backpropagation, where the gradients of the loss
function are computed to update the weights and biases using gradient descent.

Also, the MLP classifier was implemented in the Scikit-Learn v.1.1.3 Python package. The
training procedure was similar to that of the GB model: the standardization of features was per-
formed using the preprocessing.StandardScaler class and model selection.StratifiedShuffleSplit
class was used for cross-validation. The input parameters for the neural network.MLPClassifier
model class were defined as summarized in Table 2.3. The search for optimum parameters
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was also accomplished using the Scikit-learn’s model selection.GridSearchCV class, searching
over specified values of model parameters (learning rate ∈ {adaptive, constant ∈ [0.005, 0.015,
0.05]}, solver ∈ {stochastic gradient descent, stochastic gradient-based optimizer (adam) [79]},
activation ∈ {rectified linear unit function (ReLU), hyperbolic tan function (tanh)}, and a hid-
den layer size ∈ [5, 100]). Other input parameters were kept in their default settings.

Table 2.3: Summary of input parameters for the MLP classifier implemented in Scikit-Learn
v.1.1.3 (neural network.MLPClassifier model class).

Input parameter Keyword argument Value Note
Random state random state 0 Fixing the random state ensures determin-

istic behavior during fitting
Learning rate learning rate init 0.015 Controls the step-size in updating neuron

weights
Maximum number of iterations max iter 800 Number of epochs (how many times each

data point is used)
Learning rate schedule learning rate ’constant’ Selected constant learning rate
Solver solver ’adam’ Weight optimization using the Adam algo-

rithm [79]
Neuron activation function activation ’tanh’ Activation function for the hidden layer
Hidden layer size hidden layer sizes (20, ) Single hidden layer with 20 neurons

2.2.4.3 Convolutional neural network

CNN is a type of artificial neural network that is designed for the analysis of data with a grid-
like topology (e.g., images) [80, 81, 82]. It consists of several layers, including convolutional
layers, pooling layers, and fully connected layers. The convolutional layer applies a convo-
lution operation to the input image, where the convolution kernel slides over the image and
computes the dot product between the kernel and the local patch of the image to extract fea-
tures. The convolutional layer is followed by an activation function that applies non-linear
transformations to the output of the convolution. The pooling layer reduces the spatial dimen-
sions of the output of the convolutional layer by applying a pooling operation, such as max
pooling, that takes the maximum value of a local patch. The fully connected layer combines
the features learned by the convolutional and pooling layers and makes the final prediction.
The weights and biases of the convolutional and the fully connected layers are adjusted during
the network training through backpropagation, exploiting the gradient descent algorithm.

Unlike GB and MLP classifiers, CNN takes the whole image as input. Since the model
in our study was trained on 200×200 px 3-channel (RGB) images, images for classification
having a different size were rescaled to 200×200 px using an interpolation function. The CNN
classifier was implemented in the Tensorflow Keras v.2.10.0 Python package, provided by the
models.Sequential class.

Different architectures of CNNs with various number of filters for the convolutional layers
have been tested. The selected model includes three convolutional layers, each followed by a
max pooling layer, a flatten layer, and two dense layers. The first and third convolutional layers
have 32 3×3 filters, a stride of 1, and a ReLU activation function. The second convolutional
layer has 64 3×3 filters and the same activation function. The max pooling layers downsample
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the feature maps by a factor of two to make the model more efficient. The flatten layer con-
verts the 2D feature maps into a 1D vector. The two dense layers consist of 256 units with a
ReLU activation function, followed by an output layer with four neurons corresponding to the
individual CDW classes.

The selected model architecture is described in detail in Table 2.4. During the training
process, the model achieved 100% accuracy on the training data (αtrain) after 30 epochs, but the
maximum accuracy on the testing data (αtest = 80%) was reached after 11 epochs, suggesting
potential overfitting (Figure 2.6). The model trained after 11 epochs was adopted for the future
CDW classification.

Table 2.4: Architecture of the CNN models; the individual layers were implemented in the
Tensorflow Keras v.2.10.0 Python package, the layers class.

Layer Keras class Purpose
Convolutional layer (32 filters, size 3×3) Conv2D(32, (3, 3), 1, activation=’relu’,

input shape=(200, 200, 3))
Extract features from the input
images

Maximum pooling layer (2×2 pool) MaxPooling2D() Downsample the feature maps
from the previous layer

Convolutional layer (64 filters, size 3×3) Conv2D(64, (3, 3), 1, activation=’relu’) Extract features from the previ-
ous layer

Maximum pooling layer (2×2 pool) MaxPooling2D() Downsample the feature maps
from the previous layer

Convolutional layer (32 filters, size 3×3) Conv2D(32, (3, 3), 1, activation=’relu’) Extract features from the previ-
ous layer

Flattening layer Flatten() Flattens the 2D feature map into
a 1D array

Fully connected layer (256 neurons) Dense(256, activation=’relu’) Take the flattened vector from
the previous layer as input

Output layer (4 neurons) Dense(4) Values of individual neurons
represent probabilities that the
input belongs to each of the pos-
sible classes
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Figure 2.6: Training and testing accuracy as a function of epoch recorded during CNN training.



Machine learning algorithms for CDW classification: convolution versus extraction of
selected features 24

2.2.4.4 Model Evaluation Metrics

To evaluate the performance of our multi-class classification models, we primarily utilize ac-
curacy and the weighted F-score.

Let P true
c be the number of true positives for class c, N true

c the true negatives, P false
c the false

positives, and N false
c the false negatives. Accuracy, denoted by α, measures the proportion of

all correct predictions across all four classes:

α =

∑4
c=1 P

true
c +N true

c∑4
c=1 P

true
c +N true

c + P false
c +N false

c

. (2.6)

The precision Pc and recall Rc for each class are respectively defined as:

Pc =
P true
c

P true
c + P false

c

and Rc =
P true
c

P true
c +N false

c

(2.7)

The F-score for class c, denoted as Fc, offers a balance between Pc and Rc. It is described
as the harmonic mean of Pc and Rc:

Fc =
2PcRc

Pc +Rc

(2.8)

For our multi-class problem, the weighted F-score, Fweighted, is calculated by averaging the
F-score of each class, weighted by the proportion of samples from that class:

Fweighted =
4∑

c=1

wcFc (2.9)

where wc denotes the weight (proportion of samples) for the cth class.

We employ both α and Fweighted in this study to evaluate the performance of our classi-
fiers, providing a comprehensive view of their efficacy, especially in light of the minor class
imbalance present in our dataset.

2.3 Results and discussion

The performance of individual classifiers is represented through confusion matrices (Figure 2.7),
alongside the results of “manual” classification. This manual classification was accomplished
using an online survey1 by five experts on building materials from the Faculty of Civil Engi-
neering, Czech Technical University in Prague.

While accuracy provides a general measure of correctness, the weighted F-score offers a
more balanced measure between precision (how many selected items are relevant) and recall
(how many relevant items are selected). For instance, GB and MLP classifiers achieved an
accuracy of 82.5% with F-scores of 82.4%, indicating a harmonious balance between precision

1https://rm.fsv.cvut.cz/cdw/

https://rm.fsv.cvut.cz/cdw/
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and recall. The CNN classifier achieved an accuracy of 82.1% and an F-score of 82.3%, further
demonstrating the model’s consistent performance. In comparison, human experts achieved an
accuracy of 87.2% and an F-score of 87.5%, outperforming the machine classifiers slightly.

Both machine-learning classifiers and human experts had difficulties distinguishing be-
tween image samples of AAC, asphalt, and concrete. This demonstrates the inherent difficulty
in differentiating these materials visually, particularly when they share similar characteristics
like a grayish color and texture. In contrast, ceramics (bricks, roof tiles, etc.) were recognized
with an impressive accuracy of over 96% by both groups. A potential enhancement to the clas-
sification process could be the integration of a basic weight measurement device. Given the
significant differences in density between the grayish materials, weight can be a distinguishing
factor. Moreover, if a dual-camera setup were employed, the segmentation technique would
permit volume estimation from visual data, further refining the differentiation process.

Despite the commendable performance of human experts, there are inherent limitations to
relying on manual sorting. Prolonged concentration can lead to lapses in attention, impacting
the consistency of the sorting process [83]. Furthermore, machine classifiers, especially when
deployed on standard office computers, can process samples at a rate that outpaces human
capability by orders of magnitude.

In recent literature, Davis et al. [35] reported accuracy levels between 80% and 97% for
the CNN-based classification of general waste. Their categories included paper, glass, plastic,
metal, cardboard, and non-recyclables. Although their work achieved an accuracy of up to
95.7% for CDW, it’s crucial to note that the objects they classified had more distinct shapes than
the CDW fragments. Xian et al. [84] reported a perfect accuracy of 100% in their classification
of CDW on a conveyor belt. They employed a high-cost near-infrared hyperspectral camera
and a dataset with distinct categories like foam, plastic, brick, concrete, and wood. Introducing
more challenging materials such as asphalt conglomerates or AAC, often found in CDW, could
potentially reduce this high accuracy even with advanced hardware.

A study on the performance of the individual classifiers in terms of speed and accuracy is
presented as a function of subset size in Figure 2.8. As larger subsets contained more informa-
tion, the accuracy of models increased. This phenomenon was most significant in the case of
CNN, for which the image subsets had to be rescaled to 200×200 px to have the same size as
images used for training. Similar findings were reported by Dimitrov and Golparvar-Fard. [52],
who developed a system for vision-based material recognition and monitoring of construction
progress, employing the SVM classifier [85].

In our study, the GB and MLP models that utilized feature extraction, exhibited similar
speed and accuracy, both superior to CNN, especially for small subsets. Unlike CNN, both
models approached their maximum accuracies at approximately 150×150 px subset size. The
classification speed of GB and MLP classifiers, including feature extraction, was about 15×
higher compared to CNN.

The practical demonstration of the image subset classification is provided in Figure 2.9.
Here, the randomly selected CDW fragments from the testing dataset were localized using the
Rembg1 Python package based on the U2-Net deep neural network [86]. An auxiliary script
was designed to extract image subsets from the unmasked regions. The accuracy of the CNN

1https://github.com/danielgatis/rembg

https://github.com/danielgatis/rembg
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1Figure 2.7: Confusion matrices for different classifiers and comparison of their performance
with manual classification done by five experts on building materials from the FCE CTU in
Prague.

classifier was compromised by the small size (135×135 px) subsets placed over the region
of interest; however, even despite this shortcoming, even the CNN classified the fragments
correctly with high confidence. Nearly 100% confidence was reached by the GB and MLP
classifiers.

This demonstration shows that the accuracy reached for individual subsets is improved by
placing a higher number of these over the samples. The accuracy was tested on a comprehensive
dataset containing 2664 images of CDW fragments [56]; the summary of reached accuracies
for individual classifiers is provided in Table 2.5. Classification of several samples per a CDW
fragment led to overall accuracy ranging between 85.9% (CNN) and 92.3% (GB), reaching the
accuracy reported by other authors dealing with the classification of clean building materials.
In a study by Mahami et al. [55], the authors managed to classify eleven construction materials
using CNN (VGG16 network [87]) and reached up to 97.35% accuracy, yet, their dataset did
not contain contaminated materials having similar textures, such as fragments of AAC and
concrete in our study.
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Figure 2.8: Speed (left) and accuracy (right) reached by individual classifiers on the validation
(testing) datasets for different sizes of image subsets that were extracted by cropping the redun-
dant portion of the images.

Table 2.5: Accuracy of different classifiers when recognizing whole CDW fragments by clas-
sifying several (>4) 200×200 image subsets with a 70 px overlap (Figure 2.10).

Classifier AAC Asphalt Ceramics Concrete Complete dataset
(582 images) (741 images) (572 images) (769 images) (2664 images)

GB 86.9% 93.9% 99.1% 89.7% 92.3%
MLP 89.4% 93.8% 98.4% 85.2% 91.3%
CNN 56.7% 97.2% 99.0% 87.5% 85.9%

Our models, especially the Gradient Boosting and Multi-Layer Perceptron classifiers, demon-
strated competitive performance when compared to previous studies, as summarized in Ta-
ble 2.6. Notably, while our dataset size was comprehensive, the nature of our CDW images,
which included contaminated materials with similar textures, made the classification task more
challenging.

It should be noted that all the images for both training and testing datasets were taken using
the same camera and similar conditions, which can compromise the robustness of the classifi-
cation models. The goal of this proof-of-the-concept study is to demonstrate the capabilities
of the proposed low-cost lightweight procedures that could be implemented in CDW sorting
and recycling plants for CDW recognition on conveyor belts. For particular industrial applica-
tions, new site-specific training datasets should be acquired, optimally involving auxiliary data
(weight, acoustic emissions, etc.) from other sensors. Fusion of RGB cameras with different
sensors could significantly increase the accuracy, especially in the case of lightweight AAC
which is often confused with fragments of concrete that also have a fine texture and grayish
color.
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Figure 2.9: Localization of whole CDW fragments and their classification based on texture
recognition using different classifiers; the size of image subsets 135×135 px.
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Figure 2.10: A typical misclassification of AAC fragments by CNN during a comprehensive
validation of the classification algorithms; size of image subsets 200×200 px with a 70 px
overlap.

Table 2.6: Comparison of the current study with previous significant works focused on
machine-learning-based recognition of construction materials in terms of model performance,
data type, and dataset size.

Reference Model Accuracy Dataset type and size Dataset size
This study (GB) GB 92.3% CDW images 2664
This study (MLP) MLP 91.3% CDW images 2664
This study (CNN) CNN 85.9% CDW images 2664
[35] CNN 80-97% Images of conatiners with

bulk CDW
2283

[84] CNN 100% Hyperspectral images of
very diverse materials

250

[52] SVM Up to 97.1% Point cloud patches (im-
ages of construction sur-
faces)

3740

[55] CNN (VGG16) 97.35% Images of clean very di-
verse materials

1231

[38] BD-P model 90.2% Bulk density (truck loads) 4.27 mil.
[33] CNN (Custom

ResNet34)
97% Images of recycled aggre-

gates
36000

[49] CNN (CVGGNet-
16)

76.6% Images of diverse clean
bulk materials

2836 (bofore aug-
mentation)

2.3.1 Application procedure

Our developed machine-learning-assisted method for CDW fragment recognition is designed
for easy integration into existing CDW sorting systems. Here, we outline the potential applica-
tion procedure:

1. Image Acquisition: Using high-resolution cameras, images of CDW fragments on con-
veyor belts or sorting platforms are captured. Ideally, this would be integrated into a
continuous flow system where CDW moves along a conveyor.

2. Preprocessing: The captured images undergo preprocessing, which may include clean-
ing using air-flow or other mechanisms to enhance clarity, and then they are fed into the
model.
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3. Density Estimation: For individual fragments on the conveyor belt, a weight measure-
ment system can be integrated to estimate the density of each fragment. This can assist in
further refining the classification, especially for fragments with similar appearances but
different densities (e.g., AAC and concrete).

4. Classification: The preprocessed images are classified in real-time using a trained model.
The model identifies the type of CDW fragment and can potentially direct its sorting into
appropriate bins or sections.

5. Post-processing: Based on classifications, automated mechanisms or manual laborers
can be directed to ensure correct sorting or further refinement.

6. Feedback Loop: The system can be designed to continuously learn from any misclassi-
fications through a feedback mechanism, enhancing accuracy over time.

This proposed application procedure is modular and can be customized based on the specific
requirements of the CDW sorting facility, available resources, and desired accuracy levels.

2.4 Conclusion

Proper sorting of construction and demolition waste (CDW) fragments is essential for its fur-
ther valorization. In this study, we demonstrated the potential of machine-learning models for
the recognition and classification of CDW fragments using computer vision-based algorithms.
The approach was tested on four types of CDW material fragments commonly found in mixed
debris from demolition sites: aerated autoclaved concrete (AAC), asphalt conglomerates, ce-
ramics (roof tiles and bricks), and concrete fragments. For that purpose, we examined three
machine-learning classification models, gradient boosting (GB), multi-layer perception (MLP),
and convolutional neural network (CNN).

In contrast to CNN, having the 200×200×3 px RGB images as its input, GB and MLP
were trained on classifying the CDW texture based on four extracted features: (i) mean inten-
sity, (ii) mean intensity of the red color channel, (iii) Shannon entropy, and (iv) mean intensity
gradient, reducing the input space from D = 120, 000 to D = 4. In the case of CNN, the feature
extraction was accomplished using convolutional layers. The GB and MLP classifiers outper-
formed CNN not only in terms of speed (for a single image subset ∼300 s−1 vs. ∼20 s−1), but
also accuracy, especially when classifying images of sizes below 200×200 px, on which the
models were trained.

Despite the high similarity of the recognized textures and contamination of the CDW frag-
ments with dust, the examined classifiers exhibited accuracy over 82.1% for 200×200 px image
subsets, slightly below the average accuracy reached by experts on building materials (87.2%).
The accuracy reached up to 92.3% (GB) when classifying the whole fragments by placing
several subsets over the samples. The lowest overall accuracy was reached when using CNN
because the model often misclassified AAC for concrete. All the models were most accurate
when classifying fragments of ceramics (98.4–99.1%) because of their distinct reddish color.

However, this study comes with certain limitations. All images, both for training and testing
datasets, were acquired under similar conditions using the same camera, which might affect the
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robustness of the classifiers in more varied settings. Moreover, while the study showcases the
capabilities of low-cost procedures for CDW recognition, it underscores the need for acquiring
new site-specific training datasets for specific industrial applications; optimally on a conveyor
belt. The integration of additional sensors or data sources could further enhance accuracy and
reliability.

The links to image datasets, computer codes, and pre-trained models used in this study are
open and are provided as supplementary material. We believe that the findings can promote the
developments in robotics-assisted sorting of CDW fragments, enabling its efficient use in the
production of new materials and products and reduction of the environmental burden associated
with CDW disposal.
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[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[9] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

[10] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances
in neural information processing systems, 30, 2017.

[11] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush,
and Andrey Gulin. Catboost: unbiased boosting with categorical features. Advances in
neural information processing systems, 31, 2018.



REFERENCES 33

[12] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[13] Magdi Zakaria, AS Mabrouka, and Shahenda Sarhan. Artificial neural network: a brief
overview. neural networks, 1:2, 2014.

[14] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[15] Gottfried Wilhelm Freiherr von Leibniz. The early mathematical manuscripts of Leibniz:
Translated from the Latin texts published by Carl Immanuel Gerhardt with critical and
historical notes. 1920.

[16] Hyeon-Joong Yoo. Deep convolution neural networks in computer vision: a review.
IEIE Transactions on Smart Processing and Computing, 4(1):35–43, 2015.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[18] Steven B Damelin and Willard Miller. The mathematics of signal processing.
Number 48. Cambridge University Press, 2012.

[19] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer,
2014.

[20] Masoud Norouzi, Marta Chàfer, Luisa F. Cabeza, Laureano Jiménez, and Dieter Boer.
Circular economy in the building and construction sector: A scientific evolution analysis.
Journal of Building Engineering, 44:102704, 2021.

[21] Gabriel Luiz Fritz Benachio, Maria do Carmo Duarte Freitas, and Sergio Fernando
Tavares. Circular economy in the construction industry: A systematic literature review.
Journal of Cleaner Production, 260:121046, 2020.

[22] Amos Darko, Albert P.C. Chan, Michael A. Adabre, David J. Edwards, M. Reza
Hosseini, and Ernest E. Ameyaw. Artificial intelligence in the AEC industry:
Scientometric analysis and visualization of research activities. Automation in
Construction, 112:103081, 2020.

[23] Callun Keith Purchase, Dhafer Manna Al Zulayq, Bio Talakatoa O’Brien,
Matthew Joseph Kowalewski, Aydin Berenjian, Amir Hossein Tarighaleslami, and
Mostafa Seifan. Circular economy of construction and demolition waste: A literature
review on lessons, challenges, and benefits. Materials, 15:76, 2021.

[24] Mohammed Haneef Abdul Nasir, Andrea Genovese, Adolf A. Acquaye, S.C.L. Koh, and
Fred Yamoah. Comparing linear and circular supply chains: A case study from the
construction industry. International Journal of Production Economics, 183:443–457,
2017.



REFERENCES 34

[25] Amirreza Mahpour. Prioritizing barriers to adopt circular economy in construction and
demolition waste management. Resources, Conservation and Recycling, 134:216–227,
2018.

[26] Tuomo Joensuu, Harry Edelman, and Arto Saari. Circular economy practices in the built
environment. Journal of Cleaner Production, 276:124215, 2020.

[27] Benjamin I. Oluleye, Daniel W.M. Chan, Abdullahi B. Saka, and Timothy O. Olawumi.
Circular economy research on building construction and demolition waste: A review of
current trends and future research directions. Journal of Cleaner Production,
357:131927, 2022.

[28] Lina Zheng, Huanyu Wu, Hui Zhang, Huabo Duan, Jiayuan Wang, Weiping Jiang, Biqin
Dong, Gang Liu, Jian Zuo, and Qingbin Song. Characterizing the generation and flows
of construction and demolition waste in China. Construction and Building Materials,
136:405–413, 2017.
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residual anhydrous clinker in finely ground recycled concrete. Resources, Conservation
and Recycling, 155:104640, 2020.
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[56] Václav Nežerka, Jan Trejbal, and Tomáš Zbı́ral. Dataset of construction and demolition
waste images: aerated autoclaved concrete (AAC), asphalt, ceramics, and concrete,
February 2023.
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