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ABSTRACT

Advances in meta-modelling and increasing computational capacity of modern computers

permitted many researches to focus on parameter identi�cation in probabilistic setting.

Parameter identi�cation of a heterogeneous material model can be formulated as a search for

probabilistic description of its parameters providing the distribution of the model response

corresponding to the distribution of the observed data , i.e. a stochastic inversion problem.

This topic is addressed by only few works available in the up-to-date literature, each hav-

ing some relevant limitations. In the present, the estimation of aleatory uncertainties is often

connected to Bayesian inference based on hierarchical modelling when some speci�c shape

of probability density function of the model parameters is assumed. Another identi�cation

method uses optimal maps based on optimisation of a transformation function between prior

and posterior distributions. The approach allows to relax the assumptions about the speci�c

form of the parameters' distribution, but actually it is developed only for quanti�cation of

epistemic uncertainties. The goal of the doctoral thesis is to review, compare and extend

the available methods for identi�cation of inherent variability (aleatory uncertainties) with

application in calibrating heterogeneous material models.

Keywords: stochastic inversion problem, stochastic modelling, aleatory uncertainty,

polynomial chaos expansion, principal component analysis, transformation of random vari-

ables, Bayesian identi�cation, Markov chain Monte Carlo sampling, heterogeneous materials
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ABSTRAKT

Díky vývoji metamodel· a vzr·stajícímu výkonu výpo£etní techniky se mnozí výzkumníci

mohou zam¥°it na pravd¥podobnostní p°ístupy k identi�kaci parametr·. Identi�kaci para-

metr· modelu heterogenního materiálu lze formulovat jako hledání pravd¥podobnostního

popisu jeho parametr· poskytující rozd¥lení odezvy modelu, které koresponduje s rozd¥lením

nam¥°ených dat, tj. stochastický inverzní problém.

Tímto tématem se zabývá pouze n¥kolik prací dostupných v sou£asné literatu°e, kdy

kaºdá má ur£itá omezení. V sou£asnosti je odhad aleatorických nejistot £asto spojován

s bayesovskou inferencí zaloºenou na hierarchickém modelování, kdy se p°edpokládá ur£itý

tvar funkce hustoty pravd¥podobnosti parametr· modelu. Jiná identi�ka£ní metoda pouºívá

optimální mapy zaloºené na optimalizaci transforma£ní funkce mezi apriorním a posteriorním

rozd¥lením. Tento postup sice umoº¬uje upustit od p°edpokladu konkrétní podoby rozd¥lení

parametr·, ale je vyvinut pouze pro kvanti�kaci epistemických nejistot. Cílem diserta£ní

práce je prozkoumat, porovnat a roz²í°it dostupné metody pro identi�kaci p°irozené varia-

bility (aleatorických nejistot) s aplikací v kalibraci model· heterogenních materiál·.

Klí£ová slova: stochastický inverzní problém, stochastické modelování, aleatorická nejis-

tota, polynomiální chaos, analýza hlavních komponent, transformace náhodných prom¥n-

ných, bayesovská identi�kace, Monte Carlo pro Markovovy °et¥zce, heterogenní materiály
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CHAPTER 1

INTRODUCTION

In order to predict the behaviour of the structural system under the loading in a computa-

tional way, the corresponding numerical model has to be properly calibrated. In other words,

parameters of the mathematical model of the system have to be estimated as accurately as

possible to obtain realistic predictions, e.g. for usage in an appropriate reliability analysis

or structural design optimisation.

Heterogeneous character of building materials causes spatial variations of mechanical

parameters (such as elastic modulus, yield stress or tensile strength) a�ecting the structural

system behaviour under the loading. This phenomenon can be best observed during the

laboratory tests on a set of specimens made of the same heterogeneous material. Di�erences

in morphology of individual specimens induce a signi�cant variability in observed values, c.f.

Fig. 1.1b. To this end, two main approaches were developed within the last decade. The

�rst one focuses on material morphology at a micro-level and propagates the uncertainty to

the macro scale using the techniques of stochastic homogenisation [63, 3, 26]. The second

approach, principally di�erent, aims at identifying the uncertainty in material parameters

indirectly from macroscopic observations of a structural response by solving a stochastic

inverse problem. Stochastic inversion searches for a probabilistic description of stochastic

model parameters providing the distribution of the model response corresponding to the

distribution of the observed data.

In this context, uncertainties can be divided into two main categories according to

whether a source of nondeterminism is irreducible or reducible [43]. Our goal is to quantify

aleatory (irreducible, inherent, stochastic) uncertainty which corresponds to real variability

of properties in the heterogeneous material, while epistemic (reducible, subjective, cognit-

ive) uncertainty arising from our lack of knowledge is supposed to be reduced by any new

measurement according to the coherence of learning [34, 8]. Di�erence between two types of

uncertainties with respect to material properties are illustrated in Fig. 1.1.

Inverse problems are often ill-posed, because the function mapping the parameters to the
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CHAPTER 1. INTRODUCTION

1/26 

z(t) = y(x) + ε(ω) z(t) = y(x(θ)) + ε(ω)
(a) (b)

Figure 1.1: Fundamental di�erence between homogeneous (a) and heterogeneous materials
(b), respective epistemic uncertainty and combination of epistemic and aleatory uncertainty.

responses is not injective so it is also non-invertible. The most common method of para-

meter estimation is based on �tting the response of a model to the experimental data. This

approach leads to optimising parameters so as to minimise the di�erence between the data

and the model response. On the other side, in the last decades probabilistic methods to

stochastic modelling of uncertainties have became applicable thanks to a growing compu-

tational capacity of modern computers. An extensive overview on stochastic modelling of

uncertainties can be found in [54]. The probabilistic approach restates the inverse problem

as well-posed in an expanded stochastic space by modelling the parameters as well as the ob-

servations as random variables with their probability distributions [32]. Several methods for

the uncertainty quanti�cation in probabilistic settings have been proposed in the literature.

The last decade witnessed an intense development in the �eld of Bayesian updating of

epistemic uncertainty in description of deterministic material or structural parameters, see

e.g. [36]. Here, a likelihood function is established to quantify our con�dence in observed

data, with the goal to update our prior knowledge on material properties [50]. The increas-

ing popularity of Bayesian methods is motivated by developments in the �eld of spectral

stochastic �nite element method, which allows to alleviate the computational burden by

surrogate models such as polynomial chaos expansions (PC) [35]. We wish to emphasize

that this approach is designed only to the epistemic uncertainties, see Fig. 1.2a, by its ap-

plications to heterogeneous materials provides us with the mean values and a small range of

uncertainty which shrinks with additional measurements, c.f. Fig. 1.2b.

Quanti�cation of aleatory uncertainties (see Fig. 1.2c) in parameters of a nonlinear phys-

ical model is signi�cantly less elaborated. One of the identi�cation approaches is based on

choosing a particular type of probability density function (PDF) of the identi�ed aleatory

quantities and the corresponding moments of this statistical model are provided by e.g.

maximum likelihood method (MLE) or perturbation method [20]. The proposed methods

2



CHAPTER 1. INTRODUCTION

(a)
Epistemic uncertainty

in deterministic
material parameters

⇒ Model ⇒

Uncertainty in mean response

(b)
Epistemic uncertainty
in random material

parameters
⇒ Model ⇒

Uncertainty in mean response

(c)
Aleatory uncertainty
in random material

parameters
⇒ Model ⇒

Distribution of response

Figure 1.2: Scheme of an experiment and di�erent approaches to parameter identi�cation

have several crucial limitations. First, the assumption of a known type of a statistical model

is very limiting and prohibits the identi�cation of higher statistical moments. The per-

turbation method (even when extended by other nonlinear terms) is hardly applicable to

nonlinear models and Monte Carlo-based MLE faces high computational requirements. Re-

cently, authors in [19] and [53] employed independently PC-based surrogates to accelerate the

identi�cation of aleatory uncertainties formulated as a deterministic optimisation problem.

In particular, statistical moments or PC coe�cients de�ning the statistical model of physical

parameters are optimised so as to �t the corresponding moments of the model response to

the moments obtained from the experiments. While [19] emphasizes that the PC-based sur-

rogate of a model response provides an e�cient way for computing sensitivities, [53] focuses

on PC ability to e�ectively represent higher statistical moments and identify non-Gaussian

parameters. Nevertheless, many related issues remain unsolved. For instance, quanti�cation

of related epistemic uncertainties is not considered at all. It means that the methodology

is not able to re�ect the number and the value of additional measurements. Also the ap-

plication of the proposed methods to the set of correlated observations, which are typically

obtained by measuring e.g. load-displacement curves or by collecting the observations from

a set of probes placed on each specimen can be problematic. In such a situation, the higher

dimensionality of the observations leads to an increasing complexity of their joint distribu-

tions and thus to an increasing dimensionality or a number of the underlying optimisation

problems.

Stochastic inversion accounting for aleatory as well as for epistemic uncertainties is ad-

dressed in several recent works [1, 40, 39, 14]. The authors employ the same methodology

based on the PC-based approximation of material parameters' distribution. The PC coef-

�cients are obtained via formulation of a likelihood function constructed for the measured

data. Contrary to [20], the PC coe�cients are considered here as uncertain and identi-
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CHAPTER 1. INTRODUCTION

�ed in the Bayesian way by MCMC sampling. The introduction of new random variables

for describing the PC coe�cients thus allows us to quantify the epistemic uncertainty in

the estimated statistical model of aleatory material properties. Nevertheless, the method

is derived only for a situation, where identi�ed material parameters coincide with observed

quantities. In case of measuring a response of a nonlinear physical model, a set of determin-

istic inverse problems is solved �rst, so as to estimate correlated values of spatially varying

material parameters corresponding to particular spatially correlated observations. Then the

obtained parameter values enter the described stochastic inversion. The inverse problem is

thus divided into the solution of deterministic inverse problems and stochastic assimilation

of spatially correlated estimates. Such separation is however not always feasible.

We conclude that the quanti�cation of aleatory uncertainties is addressed by only few

very recent works and requires further research, which will be the subject of the dissertation

work. To be more speci�c, the work will be focused on combining and elaborating the afore-

mentioned methods so as to provide methodology to (i) quantify aleatory uncertainty, (ii)

reduce epistemic uncertainty with additional measurements and (iii) infer from observations

described by a nonlinear model.

4



CHAPTER 2

BAYESIAN INFERENCE

The principal idea of the Bayesian identi�cation is based on a common way of thought when

the resulting belief about a random event is given by a combination of all available inform-

ation. This approach introduces the concept of uncertainty in our subjective knowledge of

the identi�ed parameters [22, 57]. The Bayesian inference becomes increasingly popular and

more widespread approach to parameter identi�cation providing an elegant solution to this

inverse problem by making it well-posed. It allows to estimate values of input parameters

together with appropriate uncertainties by combining prior information and experimental

measurements, see Fig. 2.1. In this case, observations are assumed to be performed for

the speci�c yet unknown values of input parameters and epistemic uncertainty arising from

experimental errors and lack of knowledge is reduced with an increasing number of experi-

mental observations.

Bayes’ rule

Expert knowledge
Prior probability 

distribution

Posterior probability 
distribution

Experimental data
Likelihood

function

Figure 2.1: Principle of the Bayesian inference.

Consider a stochastic problem

z(x, ω) = y(x) + ε(ω), (2.1)

with uncertain model parameters x and random observable data z, which can be predicted

5



CHAPTER 2. BAYESIAN INFERENCE

by a model response y(x) besides a measurement error ε. Such an identi�cation starts with a

parameters' prior distribution p(x) quantifying our preliminary and typically very uncertain

knowledge of parameters' value. The observations then enter through the likelihood function

p(z|x) quantifying uncertainty in measurement errors. The posterior state of knowledge is

obtained as the combination of the prior and likelihood resulting in posterior distribution,

which contains higher amount of information and thus less uncertainty according to Bayes'

rule

p(x|z) =
p(z|x)p(x)

p(z)
=

p(z|x)p(x)∫
x
p(z|x)p(x)dx

. (2.2)

However the formulation of the resulting posterior probability distribution usually has

a complicated formulation including the whole structural model, which cannot be treated

analytically. To overcome this obstacle, several methods were developed. The most com-

monly referred techniques of Bayesian inference in literature are based on the Markov chain

Monte Carlo method [36], less mentioned approaches utilize the Kalman �lter [50] or optimal

transport maps [17].

2.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a sampling method based on a creation of an ergodic

Markov chain of required stationary distribution equal to the posterior [25, 23]. There

are di�erent algorithms for constructing this chain [55], e.g. Gibbs sampler or Metropolis-

Hastings algorithm, which avoids calculating of the normalisation constant in Eq. 2.2 by

evaluating only ratios of target probabilities. Suitable setting of the proposal distribution

for a random walk is important and can be evaluated on the basis of acceptance rate [48]

or autocorrelation which is required to be minimal. The convergence speed of the procedure

depends also on the appropriate choice of the starting point [23]. The essential advantage of

this method is its versatility for usage with nonlinear models, when for an in�nite number of

samples it gives the exact solution. The disadvantage of this method is its high computational

e�ort resulting from necessity of a high number of model simulations. In order to accelerate

this sampling procedure in the identi�cation process, the evaluations of a numerical model

can be replaced by evaluations of a computationally e�cient model surrogate.

2.2 Kalman �lter

The second way of obtaining updated posterior distribution comprises Bayesian linear meth-

ods, see e.g. [49], based on Kalman �ltering [33]. The basic idea of these methods is to

update the prior random variable Xf by a linear map to a linear Bayesian posterior estimate

Xa = Xf + K(z(x, ω)− Yf (Xf )), (2.3)

6



CHAPTER 2. BAYESIAN INFERENCE

where Yf is the prior model response and the Kalman gain

K = CXfYf (CYf + Cε)
−1 (2.4)

is computed from the corresponding covariance matrices and measurement covariance Cε.

The posterior Xa can be estimated by so called the ensemble Kalman �lter algorithm

based on updating of prior Monte Carlo samples, which also serve for computation of the

covariance matrices. The method requires a smaller number of samples than previous MCMC

method, but the identi�cation of the uncertainty is not generally so accurate as with MCMC.

Another approach is to approximate the random variables by polynomial chaos expansions,

which enables to evaluate the Kalman gain and posterior Xa in an algebraic way [51]. Its

main advantage is elimination of computationally demanding model simulations. However,

the result is exact only in a special case of a linear model and normally distributed random

variables, in another cases these methods are only approximate.

2.3 Transport maps

This technique is based on formulation of a transport function or a map which transforms

the prior random variable Xf into the posterior random variable Xa [17] and arises from

the context of optimal transport theory. The authors describe the map by multivariate

orthogonal polynomials and the solution is obtained by the optimisation of the corresponding

polynomial coe�cients. The cost function is de�ned with a help of the Kullback-Leibler

divergence expressing the discrepancy between the prior density p(x) and approximate map-

dependent prior density. The prior has to be expressible by standard random variables whose

probability distribution is orthogonal to the chosen polynomial basis [62]. The posterior is

then identi�ed in the form of polynomial chaos expansion which is e�cient in terms of

analytical evaluation of posterior statistical moments. Thanks to deterministic expression of

the map, one can easily sample from the posterior by transforming the prior samples.

The methodology is developed also for usage with multiscale models [45] and for accel-

erating MCMC [44].

7



CHAPTER 3

HIERARCHICAL BAYESIAN

MODELLING

Bayesian approach can be extended into multilevel setting which allows to take into account

also aleatory uncertainties [41, 7]. While in the classical formulation the model parameters

have unknown deterministic values, hierarchical Bayesian modelling enables to consider the

model parameters as stochastic variables described by some statistical model with uncertain

moments. Speci�cally, the extension is done by introducing new random variables, known

as hyperparameters θ de�ning the probabilistic speci�cation of the model parameters [22].

The parameters' prior is then conditional on the hyperparameters θ with their own prior

distribution called hyperprior p(θ), we get joint prior distribution of the parameters and

hyperparameters in a form

p(x,θ) = p(x|θ)p(θ) (3.1)

and according to Bayes' rule the corresponding joint posterior distribution up to a normal-

isation constant is

p(x,θ|z) ∝ p(z|x,θ)p(x|θ)p(θ). (3.2)

More speci�cally now we have n observations zi, each of them is realized for n com-

binations of input values xi drawn from unknown distribution. Each of these combinations

is de�ned by its prior distribution f(xi|θ) and according to assumption of observation ex-

changeability [15] the joint prior distribution is given as

p(x1, . . . ,xn,θ) =

(
n∏
i=1

f(xi|θ)

)
p(θ). (3.3)

8



CHAPTER 3. HIERARCHICAL BAYESIAN MODELLING

and the posterior as

p(x1, . . . ,xn,θ|z1, . . . ,zn) ∝
(

n∏
i=1

f(zi|xi)
)(

n∏
i=1

f(xi|θ)

)
p(θ). (3.4)

Our knowledge about the hyperparameters grows by updating based on every new measure-

ment while structure of the model parameters' prior distribution remains unchanged. Hence

the Bayesian inference is focused on the hyperparameters θ and the model parameters x

represent nuisance parameters which can be integrated out to get marginal distribution of θ.

The marginalized likelihood function is de�ned as

f(z1, . . . ,zn|θ) =
n∏
i=1

∫
f(zi|xi)f(xi|θ)dP(xi). (3.5)

and the corresponding marginalized posterior distribution is simpli�ed into

p(θ|z1, . . . ,zn) ∝ f(z1, . . . ,zn|θ)p(θ). (3.6)

The integration usually cannot be done analytically thus some integration rule has to be

employed to marginalized the likelihood which leads to approximation error and it makes

MCMC sampling of the marginalized posterior very computationally demanding. On the

other side to sample from the joint distribution is more complicated and requires some

advanced MCMC technique [6].

9



CHAPTER 4

TRANSFORMATION OF RANDOM

VARIABLES

The developed method is initially inspired by the Bayesian inference where all the available

information are combined in resulting updated distribution of the parameters. As it is fo-

cused on the quanti�cation of irreducible uncertainty in the data, the in�uence of the prior

information is suppressed and an non-informative uniform prior PDF is employed. We focus

especially on information involved in the experimental data and description of their corres-

ponding joint PDF simultaneously de�ning the joint distribution of the parameters. The

underlying problem of its practical application to real experimental data is an appropriate

formulation of the function representing the distribution of the experimental measurements.

This identi�cation procedure allows to deal with a situation where available observations

are obtained within a set of experiments, each performed on a di�erent set of specimens

(as the experiments are supposed to be destructive). This is a common situation when one

type of loading regime (uniaxial tension or compression) does not activate all the material

parameters to be identi�ed. Therefore multiple experiments for di�erent loading scenarios are

performed to ensure the complete calibration of the material model. Simple multiplication

of PDFs constructed for the data from each experiment may lead to underestimating the

parameter variance due to underlying assumption of independence among observations from

di�erent experiments. Despite the independence of specimens, the observations may be

correlated due to their physical meaning described by the material model and hence their

dependence on the same material parameters (as e.g. de�ection in the uniaxial compression

and uniaxial tensile tests depends on Young's modulus and Poisson's ratio).

Therefore the proposed method aims at estimating the intrinsic mutual correlations

among the observed quantities, which needs to be done in one of the two following ways. In

case of two observations obtained within one type of experiment (e.g. as two points of one

measured load-displacement curve), the correlation can be derived directly from the data

10



CHAPTER 4. TRANSFORMATION OF RANDOM VARIABLES

(from a set of measured curves we extract a set of paired points and compute the correlation

between two obtained columns). In case of two observations obtained from two di�erent

experiments, which are performed on di�erent specimens, the correlation cannot be com-

puted directly from the data, since the observations cannot be paired. The correlation is

thus estimated from simulated pseudo-data, where two experiments are simulated for the

same specimens using some prior distributions of material properties. Of course, the prior

distribution can be signi�cantly di�erent from the parameter distribution in real specimens,

which may to certain extent a�ect the estimate of the correlation. Nevertheless, when the

data do not allow to estimate the correlation, the pseudo-data provide at least an approxim-

ate estimate which includes the information about the relationship among the observations

given by physical meaning described by the model.

Once the correlations are estimated, the proposed methodology proceeds to transforma-

tion of the data by principal component analysis (PCA) into a set of uncorrelated quantities

[31], so called principal components. The principal components are sorted in decreasing or-

der of their variances corresponding to the eigenvalues of the covariance matrix of the data.

The �rst few components account for most of the statistical variability in all of the original

data. PCA allows us to reduce the dimensionality of observed data consisting of a large

number of correlated variables, while retaining as much as possible of the variation present

in the data. Fig. 4.1 shows a simple example of PCA in two dimensions.

djj
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2

PC1

P
C

2

Figure 4.1: An example of principal component analysis.

Considering only a reasonable number of the principal components in the stochastic

model updating procedure, it speci�cally means a reduction of the data dimension to the

dimension of the material parameters, which allows to look at the inverse problem as at the

nonlinear transformation of random variables. In other words, the problem is reformulated

in a way, where we search for a joint distribution of material model parameters, which is

given by the joint distribution of principal components obtained from the observations and

the nonlinear transformation de�ned by the material model. For this point of view, the

number of considered principal components requires to be equal to the number of identi�ed

material parameters. Moreover, principal components are easier to be handled than original

response components thanks to their limited number and uncorrelation. And on top of

11



CHAPTER 4. TRANSFORMATION OF RANDOM VARIABLES

that, the transformation into principal components also allows eliminating the in�uence of

experimental errors to a certain extent.

Having numerical models of parameters x for all n types of experiments

y1 = g1(x)
...

yn = gn(x)

, (4.1)

the principal components P are the linear combinations of the responses Y , i.e.

P = h(Y 1, ...,Y n) = h(g1(X1, ..., Xk), ..., gn(X1, ..., Xk)). (4.2)

The joint distribution of P is considered as a product of marginal univariate PDFs of

each P under assumption of the P independence. Finally the searched joint distribution of

the parameters has the following formulation based on the multivariate transformation from

the random P to the identi�ed parameters as

fX1,...,Xk = fPC1,...,PCk(h(g1(X), ..., gn(X)) · |JPC1,...,PCk(X1, ..., Xk)|, (4.3)

where JPC1,...,PCk(X1, ..., Xk) denotes the Jacobian determinant of P , it is the determinant

of the Jacobian matrix containing all �rst-order partial derivatives of P , i.e.

JPC1,...,PCk(X1, ..., Xk) = det


∂PC1

∂x1

∂PC1

∂x2
· · · ∂PC1

∂xk
∂PC2

∂x1

∂PC2

∂x2
· · · ∂PC2

∂xk...
... . . . ...

∂PCk
∂x1

∂PCk
∂x2

· · · ∂PCk
∂xk

 . (4.4)

Samples of the identi�ed PDF are obtained by the MCMC sampling procedure. In order to

accelerate this process, the approximation of the model responses based on PC is employed.

The convergence of the approximation error with the increasing number of polynomial terms

is optimal in case of orthogonal polynomials of a special type corresponding to the probability

distribution of the underlying variables [62]. Since the prior distribution of the parameters is

established as uniform, the Legendre polynomials are appropriate to be used in this approach.

The polynomial approximation is e�cient not only in terms of time requirements, but also

for the evaluation of partial derivatives in the Jacobian of the transformation.

12



CHAPTER 5

POLYNOMIAL CHAOS EXPANSION

In order to accelerate the sampling procedure in the identi�cation process, the evaluations

of a numerical model

y = g(x), (5.1)

can be replaced by evaluations of a model surrogate. In particular, we search for an approx-

imation of the response y by polynomial chaos (PC) expansion [59, 27, 37, 56], which has

the following form:

ỹ(x) =
∑
α∈J

βαψα(x), (5.2)

where βα is a vector of PCE coe�cients βα,i corresponding to a particular component of

the system response yi. ψα(x) are multivariate polynomials and α is a vector of degrees

of particular parameters from the index set J ⊂ N0 of non-negative integer sequences with

only �nitely many non-zero terms, i.e. multi-indices,

J = {α ∈ Nnx , |α| ≤ p}, (5.3)

where |α| =
∑nx

i αi and p is the maximal degree of polynomials. The expansion (5.3) is

usually truncated to the limited number of terms nβ, which is very often related to the

number of random variables nx and to p according to the relation

nβ =
(p+ nx)!

p!nx!
. (5.4)

PC can be used to approximate the response with respect to probability distribution of

the random variables. There are di�erent base of orthogonal polynomials associated with

special types of the probability distribution of the underlying variables [62], e.g. Hermite

polynomials are associated with the Gaussian distribution, Legendre polynomials with the

uniform distribution and so on.

13



CHAPTER 5. POLYNOMIAL CHAOS EXPANSION

Polynomial chaos-based surrogate modelling enables to compute statistical moments of

an approximated model response analytically from the PC coe�cients [61]. In particular,

mean can be computed as

µr̃ = E[r̃] =

∫ ∑
|α|≤np

βαψα(x)dP(x) = β0 (5.5)

and standard deviation as

σr̃ =
√
E[(r̃ − µr̃)2] =

√ ∑
0<|α|≤np

E[ψ2
α(x)]β2

α, (5.6)

where

E[ψ2
α(x)] =

∫
ψ2
α(x)dP(x) =

∫
· · ·
∫
nx

nx∏
j=1

(ψ2
α,j(xj))dP(x1) · · · dP(xnx). (5.7)

The e�ciency of this method thus depends mainly on the computational demands of

the PC construction and its accuracy, which are connected with a method chosen for the

construction of the surrogate model [46, 42, 2].

There are several methods for construction of PC-based surrogates: linear regression

[9, 11, 13], stochastic collocation methods [4, 60] and the stochastic Galerkin method [24, 5,

38, 16]. The principal di�erences among these methods are following. The linear regression

is a stochastic method based on a set of model simulations performed for a stochastic design

of experiments, usually obtained by Latin Hypercube Sampling. The PC coe�cients are

then obtained by regression of the model outputs at the design points, which leads to a

solution of a system of equations. On the other side the stochastic collocation method is a

deterministic method, which uses a set of model simulations on a sparse grid constructed for

a chosen level of accuracy. The computation of the PC coe�cients is based on an explicit

formula. The stochastic Galerkin method is also deterministic, but leads to a solution of a

large system of equations and needs an intrusive modi�cation of the numerical model itself

[18, 47].

5.1 Linear regression

A very general method of computing PC coe�cients in Eq. (5.2) is a well-known linear

regression [9]. The underlying assumption of linear regression is that the surrogate ỹ is a

linear combination of the parameters β, but does not have to be linear in the independent

variables x. The application is based on the three following steps:

i preparation of data X ∈ Rnx×nd which are obtained as nd samples of parameter vector

xi

ii evaluation of the model for samples xi resulting in response samples yi organised into

14



CHAPTER 5. POLYNOMIAL CHAOS EXPANSION

the matrix Y ∈ Rny×nd , where ny is a number of response components and

iii computation of PC coe�cients βα organised into the matrix B ∈ Rny×nβ using e.g.

the ordinary least square method.

Since the most time-consuming part of this method consists in evaluations of the model

for samples of random variables, the choice of these samples represents a crucial task with

the highest impact on the computational time requirements. The simplest way is to choose

the samples by Monte Carlo method, i.e. to draw them randomly from the prescribed

probability distribution. However, the accuracy of the resulting surrogate depends on a

quality, how the samples cover the de�ned domain [29]. The same quality can be achieved

by a smaller number of samples when drawn according to some strati�ed procedure called

design of experiments (DoE). Latin hypercube sampling (LHS) is a well-known DoE able

to respect the prescribed probability distributions. There exist also more enhanced ways of

optimising the LHS (see e.g. [30]).

The computation of the PC coe�cients B starts by evaluation of all the polynomial terms

ψα for all the samples xi and saving them in the matrix Z ∈ Rnd×nβ . The ordinary least

square method then leads to

ZTZBT = ZTYT, (5.8)

which is ny linear systems of nβ equations.
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CHAPTER 6

SENSITIVITY ANALYSIS

Global sensitivity analysis (SA) is an important tool for investigating the relationship between

the model inputs and model outputs. In parameter identi�cation it can be used to determine

the most sensitive component of the model response to the identi�ed parameter. In other

words, it speci�es the most suitable quantity to be measured in order to increase e�ciency

of the identi�cation. This is a basic information for planning the laboratory experiments.

Several approaches to SA have been developed, see e.g. [52]. Widely used sampling-based

approaches aim at an evaluation of Spearman's rank correlation coe�cient (SRCC) or Sobol'

indices based on simulations performed for the design of experiments. Another approach is

to use e�ectively the mentioned polynomial approximation which allows to evaluate the

sensitivity in the form of Sobol' indices analytically from its coe�cients [10].

The SRCC is able to determine the relationship between the inputs and outputs of

nonlinear monotonic models [28] and is computed according to

ρxi,yj = 1− 6
∑n

a=1 (r(xi,a)− r(yj,a))2
n(n2 − 1)

, (6.1)

where xi,a is a value of the parameter xi corresponding to a-th model simulation and yj,a is

a corresponding model response, n is a total number of the model simulations. The samples

xi,a and yj,a are sorted according to their values which gives them the appropriate ranks

r(xi,a) a r(yj,a) used in the computation of the SRCC.

Sobol' indices allow to describe the relationship between the inputs and outputs also for

non-monotonic models. The index is a ratio of the output variance induced by a chosen

parameter and the total output variance and can be computed from the PC approximation

according to

Sxi =

∑
α∈Ii β

2
αE[ψ2

α(x)]∑
α∈J\{0} β

2
αE[ψ2

α(x)]
, (6.2)

where Ii determines the polynomials involving the terms depending only on xi and polyno-
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CHAPTER 6. SENSITIVITY ANALYSIS

mial degrees of other variables are null, i.e.

Ii = {α ∈ Nnx : 0 ≤
s∑
j=1

αj ≤ p, αl = 0⇐⇒ l /∈ (i),∀l = 1, . . . , nx}, (6.3)

and speci�cally for Legendre polynomials

E[ψ2
α(x)] =

∫
ψ2
α(x)dP(x) =

∫
· · ·
∫
nx

nx∏
j=1

(ψ2
α,j(xj))dP(x1) · · · dP(xnx) =

nx∏
j=1

2

2αj + 1
,

(6.4)

where αj is a polynomial degree of variable xj in the polynomial ψα.

We introduce a simple new type of Sobol indices, so-called additive sensitivity indices,

which consist of the sensitivity indices of the considered variable and a part of the sensitivity

indices corresponding to the variable's combination with another variables, these indices are

divided by the number of appeared variables to get their particular part. The formula for

the additive sensitivity indices is

S∗xi =

∑
α∈Ii β

2
αE[ψ2

α(x)] +
∑
α∈I∗i

1/n∗
iβ

2
αE[ψ2

α(x)]∑
α∈J\{0} β

2
k,αE[ψ2

α(x)]
, (6.5)

where n∗i is a number of variables included in the polynomials from the set I∗i de�ning all

the polynomials involving xi except the polynomials from Ii , i.e.

I∗i = {α ∈ Nnx : 0 ≤
s∑
j=1

αj ≤ p,αi 6= 0 ∧αl 6= 0⇐⇒ l 6= i,∀l = 1, . . . , nx}. (6.6)

The total sum of the additive sensitivity indices is equal to one.
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CHAPTER 7

NUMERICAL EXAMPLES

The developed identi�cation method based on transformation of random variables has been

applied for calibration of several numerical models. In this statement, three of them are

presented.

7.1 A�nity hydration model

A�nity hydration models provide a framework for accommodating all stages of cement

hydration. We consider hydrating cement under isothermal temperature 25◦C. At this

temperature, the rate of hydration can be expressed by the chemical a�nity Ã25(α) under

isothermal 25◦C
dα

dt
= Ã25(α), (7.1)

where the chemical a�nity has a dimension of time−1 and α stands for the degree of hydra-

tion.

The a�nity for isothermal temperature can be obtained experimentally; isothermal calor-

imetry measures a heat �ow q(t) which gives the hydration heat Q(t) after integration. The

approximation is given

Q(t)

Qpot

≈ α, (7.2)

1

Qpot

dQ(t)

dt
=

q(t)

Qpot

≈ dα

dt
= Ã25(α), (7.3)

where Qpot is expressed in J/g of cement paste. Hence the normalized heat �ow q(t)
Qpot

under

isothermal 25◦C equals to chemical a�nity Ã25(α).

Cervera et al. [12] proposed an analytical form of the normalized a�nity which was
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CHAPTER 7. NUMERICAL EXAMPLES

re�ned in [21]. Here we use a slightly modi�ed formulation [58]:

Ã25(α) = B1

(
B2

α∞
+ α

)
(α∞ − α) exp

(
−η α

α∞

)
, (7.4)

where B1, B2 are coe�cients related to chemical composition, when

B2 =
(−0.0767 · C4AF + 0.0184) ·Bf

B1 · 350
, (7.5)

where Blaine �neness Bf = 392.5m2/kg and mass percentage of C4AF is 10%. α∞ is the

ultimate hydration degree and η represents microdi�usion of free water through formed

hydrates.

When hydration proceeds under varying temperature, maturity principle expressed via

Arrhenius equation scales the a�nity to arbitrary temperature T

ÃT = Ã25 exp

[
Ea
R

(
1

273.15 + 25
− 1

T

)]
, (7.6)

where R is the universal gas constant (8.314 Jmol−1K−1) and Ea [Jmol−1] is the activation

energy. For example, simulating isothermal hydration at 35◦C means scaling Ã25 with a

factor of 1.651 at a given time. This means that hydrating concrete for 10 hours at 35◦C

releases the same amount of heat as concrete hydrating for 16.51 hours under 25◦C. Note that

setting Ea = 0 ignores the e�ect of temperature and proceeds the hydration under 25◦C.

The evolution of α is obtained through numerical integration since there is no analytical

exact solution.

The goal of this example is to identify parameters B1, α∞ and η from 50 pseudo-

experimental α curves. Uninformative uniform prior distribution is de�ned by its bounds

given in Tab. 7.1.

Parameter Minimum Maximum
B1 [h−1] 0.1 1.0
η [−] 2.0 12.0
α∞ [−] 0.7 1.0

Table 7.1: Bounds for a�nity model parameters.

At �rst, the given data are transformed into the principal components and the �rst three

of them are considered in the identi�cation process. PC approximation in the form of fourth

order Legendre polynomials is employed. Fig. 7.1 depicts results of sensitivity analysis

based on additive sensitivity indices for the principal components computed from the PC

coe�cients.

The marginal distribution of each principal component is formulated as normal kernel es-

timation from the transformed data. Their joint distribution is transform by the appropriate

Jacobian into the joint distribution of the parameters. Fig. 7.2 shows the resulting para-
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Figure 7.1: Additive sensitivity indices expressing in�uence of each model parameter to the
principal components.

meters' distribution obtained from 100, 000 MCMC samples as marginal univariate, resp.

bivariate PDFs.
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Figure 7.2: Identi�ed univariate and bivariate distribution of particular parameters.

To validate the identi�cation, the model response corresponding to the identi�ed para-

meters' PDF is compared to the pseudo-experimental data in Fig. 7.3. There we get a very
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good �t and can conclude that the identi�cation process is successful.
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Figure 7.3: Comparison of pseudo-experimental data and model response corresponding to
the identi�ed parameters' PDF.

7.2 Parameter identi�cation from cyclic loading test

The second numerical example is a part of the ESA project Reliability Analysis and Life Pre-

diction with Probabilistic Methods. For this reason, the detailed information and results are

con�dential therefore all the numerical data are scaled. We obtained a pseudo-experimental

set of 50 curves from the cyclic loading test of a heterogeneous viscoplastic material, see

Fig. 7.4. The response of corresponding numerical model is in�uenced by six uncertain

parameters and the model itself is considered as a black box. The given data set is produced

for inputs where two of the parameters are strongly correlated. Task is to identify the relev-

ant parameters within the given loading test and their probability density functions (PDF)

corresponding to the measured experimental curves.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

t [h]

y

 

 

Experiments
Experiments, mean ± std
Identification, mean ± std

Figure 7.4: Given pseudo-experimental curves.

The obtained data are transformed into the principal components and the �rst six of them

are considered in the identi�cation process. PC approximation in the form of sixth order
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Legendre polynomials is employed. The marginal distribution of each principal component

is formulated as normal distribution with mean value and standard deviation estimated

from the transformed data. The de�ned joint distribution is transform by the appropriate

Jacobian into the joint distribution of the parameters.

The parameters' marginal univariate and bivariate PDFs obtained by normal kernel es-

timation from the 500, 000 MCMC samples are shown in Fig. 7.5 and the correlation matrix

corresponding to the whole joint distribution is given in Eq. 7.7. Results con�rm that the

proposed method is able to identi�ed introduced correlation between parameters x1 and x2
in the experimental samples.

x1 x2 x3 x4 x5 x6

x1

x2

x3

x4

x5

x6

Figure 7.5: Identi�ed 1D and 2D marginal pdfs of model parameters (red) and experimental
samples (blue).
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R =



1.000 0.868 -0.034 -0.198 -0.149 -0.225

0.868 1.000 0.016 -0.248 -0.075 -0.238

-0.034 0.016 1.000 -0.235 -0.047 0.028

-0.198 -0.248 -0.235 1.000 -0.022 0.031

-0.149 -0.075 -0.047 -0.022 1.000 0.045

-0.225 -0.238 0.028 0.031 0.045 1.000


(7.7)

In Fig. 7.6 the model output corresponding to the identi�ed parameters' distributions is

compared to the experimental data.
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Figure 7.6: Comparison of experimental data and model response corresponding to the
identi�ed parameters.

The parameter ν is not identi�ed. This can be caused by small sensitivity of the output

to this parameter, this assumption is con�rmed by results of sensitivity analysis given in

Fig. 7.7. The sensitivity determine the relevant and irrelevant parameters within given

loading test. Now we express the sensitivity of stress to particular parameters with help of

SRCC. The sensitivity is calculated from 50, 000 samples of prior parameters' PDFs. We can

conclude that ν is the irrelevant parameter.
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Figure 7.7: Sensitivity analysis of dependence between the parameters and stress.
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7.3 Calibration of damage model

This example concentrates on stochastic parameter identi�cation of heterogeneous materials

from di�erent types of destructive experiments.

The proposed identi�cation method is applied at identi�cation of material parameters

of a damage model derived from the Landgraf Morrow equation. The relation between the

strain range ∆ε and the number of cycles to a failure of the specimen Nf is given as

Nf =

(
∆ε

S

)−s
. (7.8)

The material parameters to be identi�ed are the fatigue ductility coe�cient S [-] and fatigue

ductility exponent s [-]. The expert knowledge about these parameters is formulated as an

non-informative prior uniform distribution on the intervals from 0.1 to 1.2 for S and from

1.0 to 2.8 for s.

In order to identify the damage parameters, two types of destructive experiments are

considered and only pseudo-experimental data are used in this study. The �rst experiment

is a tensile test with 50 repetitions, where the measured quantity is the strain at rupture

and directly corresponds to the identi�ed parameter S. In the second experiment with 30

realizations, the number of cycles to a failure of the specimen Nf is measured under cyclic

loading with the strain range ∆ε = 0.03. The histograms of the pseudo-experimental data

and the corresponding marginal distributions are depicted in Fig. 7.8.
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Figure 7.8: Distributions of pseudo-experimental observations.

The application of the developed method having data from di�erent sets of specimens re-

quires involving information about mutual correlations based on the prior parameters' PDF.

Knowledge of these mutual correlations and marginal distribution estimates of the particular

measurements based on a normal kernel function enables us to produce new synthetic exper-

imental samples. The joint distribution of P is constructed on the basis of 10.000 synthetic

samples and subsequently transformed by the appropriate Jacobian to the joint distribution

of the damage parameters. Fig. 7.9 shows identi�ed joint distribution and marginal PDFs

of the particular parameters.

The identi�cation of the fatigue ductility coe�cient S is essentially perfect, whereas

variance of the fatigue ductility exponent s is not identi�ed well. The obtained di�erence
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Figure 7.9: Identi�ed parameters' distribution - marginal PDFs and isolines of joint PDF.

in the variance of s is probably caused by omission of the PC dependency. The important

aspect for assessing the success of the identi�cation method is comparison of the distribution

of the given data and the distribution of the model responses corresponding to the identi�ed

parameters' PDF. In this context the identi�cation is successful, see Fig. 7.10.
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Figure 7.10: Comparison of experimental observations and model responses corresponding
to the identi�ed parameters' distribution.
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CHAPTER 8

CONCLUSION

The submitted statement represents a thematic overview of the doctoral thesis dealing

with identi�cation of aleatory uncertainty in parameters of heterogeneous materials. The

research focuses on methodology which enables to �nd a probability distribution of the model

parameters providing a distribution of the model response corresponding to the distribution

of the observed data.

During previous part of the doctoral studies, a new identi�cation procedure was de-

veloped. The proposed methodology recasts the inverse problem in probabilistic framework

similar to Bayesian inference. The principal idea is to formulate the inverse problem as

a nonlinear transformation of joint distribution of observed quantities into the correspond-

ing joint distribution of material model parameters. The crucial step of the method concerns

the proper formulation of the joint distribution of the observed data. Computationally, the

method is based on MCMC sampling of the prescribed joint distribution. It is computation-

ally reasonable, especially in combination with the PC-based surrogate of the material model.

The method allows to combine data from di�erent types and numbers of experiments with the

inclusion of dependencies among the experiments. In contrast to methods commonly found

in the literature, the principal advantage of the method consists in no preliminary assump-

tions about a speci�c type of parameters' PDF. On the other side, a signi�cant drawback

of the identi�cation procedure is its inability to distinguish between aleatoric and epistemic

uncertainties, the method identi�es the both types of uncertainties together. A part of this

statement is validation of the developed methodology on parameter identi�cation of three

material models.

The presented stochastic inversion arises from formulation of the data distribution.

Therefore, the procedure is limited to cases with large data sets, which allow to determ-

ine the corresponding statistical model with a negligible uncertainty. In case of a very low

number of experiment repetitions, the underlaying epistemic uncertainty needs to be con-

sidered. The aim of the current research is to separate the aleatory and epistemic uncertainty
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by methodology that allows a minimisation of the latter along with the quanti�cation of the

former. We plan to focus on Bayesian hierarchical modelling of uncertainties, where statist-

ical moments are modelled as random variables and can be updated for any new observation.

So as to avoid the necessity to assume a particular family of statistical models, PC will be

employed again to allow for representation of non-Gaussian variables. Analogically, the PC

expansion will be employed to describe the PDF of material parameters and corresponding

PC coe�cients will be considered as uncertain. The distribution of PC coe�cients will thus

quantify the epistemic uncertainty in the resulted estimation of material parameters' PDF.

The objective of the doctoral thesis is to review, compare and extend the available meth-

ods for identi�cation of inherent variability (aleatory uncertainties) with application in cali-

brating heterogeneous material models.
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