Preliminary structural analysis

Objective:

- design of the load-bearing structure (shape and supporting) + basic check
- design and verify dimensions of all loadbearing elements $=$ the most loaded elements

Preliminary structural analysis

Cooperation with other designers and architect and provider

Outputs:

- drawing of the layout of load-bearing structures

Preliminary structural analysis

- Idealisation of the structure simplifications.
- Effects of loads (M, N, V) - estimation.

Preliminary structural analysis

Procedure:

- from beard to bearing structures

Cast-in-place (in- situ, monolitic) structures - beams, slabs

1. design of dimensions - empirical formulas
2. load
3. effect of loads of the most loaded member
4. check of the load-bearing capacity in bending: Check of the depth of compressed zone x / d, reinforcement ratio ρ
5. check of the load-bearing capacity in shear : for beams - check of resistance $\mathrm{V}_{\mathrm{Rd} \text {,max }}$ for slabs supported on columns (punching) - check of resistance $\mathrm{V}_{\mathrm{Rd} \text {, max }}$
6. check of SLS (deflection: I/d)

Very thin members may require detailed calculation of deflection and crack width in prelim. design

GIRDERS		depth	width
simply supported and continuous beams			
	conventional	$(1 / 15-1 / 8) /$	$(0,33-0,4) h$
	roof	$(1 / 17-1 / 12) /$	$(0,33-0,4) h$
cantilever beams conventional			
	roof	$1 / 5 /$	$(0,33-0,4) h$

- Check:
$\xrightarrow[\text { Deflection control }]{\text {-ULS }}$
$\lambda=1 / d$
Important for slabs

2

Loads of the slab

	characteristic $\mathrm{kN} / \mathrm{m}^{2}$	γ_{F}	design $\mathrm{kN} / \mathrm{m}^{2}$
Permanent			
floor	3,13		
self weight of the slab $0,16 \mathrm{~m} .25 \mathrm{kN} / \mathrm{m}^{3}$	4,00		
Permanent load	$g_{k}=7,13$	1,35	$g_{d}=9,63$
Variable load	$q_{k}=4,5$	1,5	$q_{d}=6,75$
Total	$(g+q)_{k}=11,63$	$(g+q)_{d}=16,38$	

Estimation is possible, if the proper values are not known yet.

2

Load of a beam

tributing sripe $4 m$

UDL

		characteristic kN/m	γ_{F}	$\begin{array}{r} \hline \text { design } \\ \mathrm{kN} / \mathrm{m} \end{array}$
Permanent				
load from the slab	$4 \mathrm{~m} .7,13 \mathrm{kN} / \mathrm{m}^{2}$	46,52		
self weight of the beam	0,25m. $0,5 \mathrm{~m} .25 \mathrm{kN} / \mathrm{m}^{3}$	3,13		
Permanent load		$g_{k}=49,65$	1,35	$g_{d}=67,03$
Variable load				
Variable from the slab	$4 \mathrm{~m} .4,5 \mathrm{kN} / \mathrm{m}^{2}$	$q_{k}=18$	1,5	$q_{d}=27$
Total		$(g+q)_{k}=46,47$		$\left.{ }^{+}+q\right)_{d}=94,03$

2

Load for column

3

$$
M=(1 / 10 \text { resp. } 1 / 12) f l^{2}
$$

- Load from slabs supported on 4 sides - re-calculate: UDL.
- Usually only 1 load case

4 check of the load-bearing capacity in bending
= verifying that the dimensions of the member are sufficient and the reinforcement could be later designed.
It is not necessary to design number and diameter of bars; check may be performed with help of tables of required area of reinforcement $A_{\mathrm{s}, \text { req }}$
$\xi \leq \xi_{\text {max }}$
event. calculate ρ

With tables: $\max M_{\mathrm{Ed}} \rightarrow \mu \rightarrow \xi \leq \xi_{\max }$

μ	(b)	ξ	ζ	$E_{S l}$	Ec	0,05	$\begin{aligned} & \varepsilon_{\mathrm{s} 2} \mathrm{p} \\ & 0,1 \end{aligned}$	/d 0,15	0,2		
0.010	0.0101	0.013	0.995	275.093	-3.500	10.430	24.359	38.289	52.219		
0.020	0.0202	0.025	0.990	135.086	-3.500	3.429	10.359	17.288	24.217		
0,030	0,0305	0,038	0,985	88,412	-3,500	1,096	5,691	10,287	14,882		
0.040	0.0408	0.051	0.980	65.071	-3.500	-0.071	3.357	6.786	10.214		
0,050	0,0513	0,064	0,974	51,063	$\xi<\bullet \bullet \bullet \bullet \bullet \bullet \bullet$		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$		7,413		
0.060	0.0619	0.077	0.969	41.722			5.544				
0.070	0.0726	0.091	0.964	35.047			4.209				
0.080	0.0835	0.104	0.958	30.039			3.208				
0.090	0.0945	0.118	0.953	26.142			2.428				
0.100	0.1056	0.132	0.947	23.022			1.804				
0.110	0.117	0.146	0.942	20.468	-3.500	-2.302			-1.103	0.095	1.294
0,120	0,128	0,160	0,936	18,337	-3,500	-2,408			-1,316	-0,224	0,867
0.130	0.140	0.175	0.930	16.533	-3.500	-2,498			-1.497	-0.495	0.507
0,140	0,151	0,189	0,924	14,985	-3,500	-2,576			-1,651	-0,727	0,197
0.150	0.163	0.204	0.918	13.642	-3.500	-2.643			-1.786	-0.929	-0.072

Without table:

$\max M_{\mathrm{Ed}} \rightarrow$ design of reinforcement
(estimate $z \rightarrow A_{\mathrm{s} \text {,req }} \rightarrow x \rightarrow \xi \leq \xi_{\max }$, event check of ρ)

Alternatively:

$\underset{\rightarrow}{\xi_{\text {opt }}}=0,25-0,3$ (for beam) \rightarrow from the table: μ

$$
\begin{aligned}
d & =\sqrt{ } \ldots \ldots \rightarrow h \\
\mu & =\frac{M}{b d^{2} \alpha f_{c d}}
\end{aligned}
$$

4 check of the load-bearing capacity in shear

= check of „compressed diagonals"

$\max \mathrm{V}_{\mathrm{Ed}} \leq \mathrm{V}_{\mathrm{Rd}, \max }$

6 Check of SLS

deflection - important especially for slabs

$$
\left\|\| \boldsymbol{d} \leq \lambda_{\text {lim }}\right.
$$

Cast-in-place (in- situ, monolithic) structures - columns

Moments are usually neglected and the member is designed just with respect to compressive force.

Assumption: $\rho=1,5 \sim 2 \%$

Very slender columns or combination of N and high M - calculation with respect to $\mathrm{N}+\mathrm{M}$

Structural analysis form

well-arranged, logical, legible

- use one side of the sheet of paper only
- number of pages -
- all calculations in the analysis, notes, explanations
- formula - introduction - result
- units
- sketches, figures
- state Code used for analysis

Drawing of the layout of loadbearing structure

- drawings of general arrangement
- assembly drawings

UPOZORNENI:
NEDITNOU SOUCÁSTÍ VYKKRESU JE
IPODKLAD PRONAVRHOVANI POROTHERM'
A STATICKY VYPOCET, S KONSTRUKCNIMI
DETAILY A SCHEMATY

BETON C16/20
 OCEL 10505 (ϕ R)

STROPNI' NOSNIKY
(1) POT 575/902, KS 13
(2) POT $625 / 902, \mathrm{KS} 11$
(3) POT $350 / 902, \mathrm{KS} 3$

STROPNI' VLOEKKY :
MIAKO 19/62,5 PTH, KS 410
MIAKO 8/62,5 PTH , KS 10ZDIVO POROTHERM 44 P+D1 P10 + MVC 5
ZDIVO CP $(290 / 140 / 65), P 15+M C 10$

