Objective:

- design of the load-bearing structure (shape and supporting) + basic check
- design and verify dimensions of all loadbearing elements = the most loaded elements

Cooperation with other designers and architect and provider

Outputs:

 drawing of the layout of load-bearing structures

- Idealisation of the structure simplifications.
- Effects of loads (M, N, V) estimation.

Procedure:

• from beard to bearing structures

Cast-in-place (in- situ, monolitic) structures – beams, slabs

- 1. design of dimensions empirical formulas
- 2. load
- 3. effect of loads of the most loaded member
- 4. check of the load-bearing capacity in bending: Check of the depth of compressed zone x/d, reinforcement ratio ρ
- check of the load-bearing capacity in shear : for beams – check of resistance V_{Rd,max} for slabs supported on columns (punching) – check of resistance v_{Rd,max}
- check of SLS (deflection: I/d)
 Very thin members may require detailed calculation of deflection and crack width in prelim. design

GIRDERS		depth	width
simply supported and continuous beams			
	conventional	(1/15 - 1/8) /	(0,33-0,4) <i>h</i>
	roof	(1/17 - 1/12) /	(0,33-0,4) <i>h</i>
cantilever beams			
	conventional	1/5 <i>I</i>	(0,33-0,4) h
	roof	1/10 /	(0,33-0,4) h

Loads of the slab

	characteristic	$\gamma_{ m F}$	design kN/m ²	
	kN/m ²			
Permanent				
floor	3,13			
self weight of the slab $0,16m \cdot 25 \text{kN/m}^3$	4,00			
Permanent load	$g_k = 7,13$	1,35	$g_d = 9,63$	
Variable load	$q_{k} = 4,5$	1,5	$q_d = 6,75$	
Total	$(g+q)_k = 11,63$	(g+	$(q)_d = 16,38$	

Estimation is possible, if the proper values are not known yet.

Load of a beam

tributing sripe 4m

UDL

		characteristic	$\gamma_{ m F}$	design
		kN/m		kN/m
Permanent				
load from the slab	$4m \cdot 7,13 \text{ kN/m}^2$	46,52		
self weight of the beam	$0,25m \cdot 0,5m \cdot 25kN/m^3$	3,13		
Permanent load		$g_k = 49,65$	1,35	$g_d = 67,03$
Variable load				
Variable from the slab	$4m \cdot 4,5 \text{ kN/m}^2$	$q_{k} = 18$	1,5	$q_d = 27$
Total		$(g+q)_k = 46,47$	(g	$(+q)_d = 94,03$

Load for column

- Load from slabs supported on 4 sides re-calculate: UDL.
- Usually only 1 load case

4 check of the load-bearing capacity in bending

- = verifying that the dimensions of the member are sufficient and the reinforcement could be later designed.
- It is not necessary to design number and diameter of bars; check may be performed with help of tables of required area of reinforcement A_{s.req}

$\xi \leq \xi_{max}$

event. calculate ρ

With tables: max $M_{Ed} \rightarrow \mu \rightarrow \xi \leq \xi_{max}$

	и <i>с</i> ⁸			7	$\epsilon_{s2} \text{ pro } d_2/d$				
μ		2	ح	Esl	23	0,05	0,1	0,15	0,2
0.010 0,020 0,030 0,040	0.0101 0,0202 0,0305 0,0408	0.013 0.025 0.038 0.051	0.995 0.990 0.985 0.980	275.093 135.086 88,412 65.071	-3.500 -3,500 -3,500 -3,500	10.430 3,429 1,096 -0,071	24.359 10.359 5,691 3,357	38.289 17.288 10,287 6.786	52.219 24.217 14,882 10,214
0,050 0,060 0,070 0,080 0,090 0,100	0,0513 0,0619 0,0726 0,0835 0,0945 0,1056	0,064 0,077 0,091 0,104 0,118 0,132	0,974 0,969 0,964 0,958 0,953 0,947	51,063 41,722 35,047 30,039 26,142 23,022		ξ<		•	7,413 5,544 4,209 3,208 2,428 1,804
0,110 0,120 0,130 0,140 0,150	0,117 0,128 0,140 0,151 0,163	0.146 0,160 0.175 0,189 0.204	0.942 0,936 0.930 0,924 0,918	20,468 18,337 16,533 14,985 13,642	-3,500 -3,500 -3,500 -3,500 -3,500	-2,302 -2,408 -2,498 -2,576 -2,643	-1,103 -1,316 -1,497 -1,651 -1,786	0,095 -0,224 -0,495 -0,727 -0,929	1.294 0,867 0,507 0,197 -0,072

Without table:

 $\begin{array}{l} \max M_{\rm Ed} \to {\rm design \ of \ reinforcement} \\ ({\rm estimate} \ z \to A_{\rm s,req} \to x \to \xi \leq \xi_{\rm max} \ , \ {\rm event} \\ {\rm check \ of} \ \rho) \end{array}$

Alternatively:

 $\xi_{\text{opt}} = 0,25-0,3 \text{ (for beam)} \rightarrow \text{from the table: } \mu$ \rightarrow $d = \sqrt{\dots} \rightarrow h$ $\mu = \frac{M}{b d^2 \alpha f_{ed}}$

4 check of the load-bearing capacity in shear

= check of "compressed diagonals"

 $\max V_{Ed} \le V_{Rd,max}$

deflection – important especially for slabs

If $d \leq \lambda_{\lim}$

Cast-in-place (in- situ, monolithic) structures – columns

Moments are usually neglected and the member is designed just with respect to compressive force.

Assumption: $\rho = 1,5 \sim 2\%$

Very slender columns or combination of N and high M – calculation with respect to N+M

Structural analysis form

well-arranged, logical, legible

- use one side of the sheet of paper only
- number of pages –
- all calculations in the analysis, notes, explanations
- formula introduction result
- units
- sketches, figures
- state Code used for analysis

Drawing of the layout of loadbearing structure

- drawings of general arrangement
- assembly drawings

UPOZORNĚNÍ:

NEDILNOU SOUČÁSTÍ VÝKRESU JE IPODKLAD PRONAVRHOVÁNÍ POPOTHERH' A STATICKÝ VÝPOČET S KONSTRUKČNÍHI DETAILY A SCHÉMATY

BETON C16/20 OCEL 10503 (\$R)

9TROPNI NOSNIKY : (1) POT 575/902 KS 13 (2) POT 625/902 KS 11 (3) POT 350/902 KS 3

STROPNÍ VLOŽKY : MIAKO 19/62,5 PTH , KS 410 MIAKO 8/62,5 PTH , KS 10

ZDIVO POROTHERM 44 P+D, P10 + MVC 5

ZDIVO CP (290/140/65), P15 + MC10

