

# Nelineární analýza ohýbaného nosníku pomocí ATENA Engineering 2D

#### Petr Bílý

kancelář B731 e-mail: <u>petr.bily@fsv.cvut.cz</u> web: people.fsv.cvut.cz/www/bilypet1

## ATENA Engineering 2D

- http://www.cervenka.cz/cz/ke-stazeni/
- Program obsahuje i manuály, vč. teoretického
- Bez klíče možno spustit v DEMO verzi omezený počet prvků (300 vč. prvků výztuže)

#### Příklad: Popis konstrukce



### Odhad výsledků

- Vždy musím být schopen předem odhadnout, co mi vyjde
- Program je pouze nástrojem pro stanovení přesných číselných hodnot
- Odhad:

Tvar průhybu  $M_{Rm} = A_s * f_{ym} * z = 400*550*200 = 44 \text{ kNm}$  $F_{Rm} = M_{Rm}/r = 44/0,833 = 52,8 \text{ kN}$ 

(Přesný ruční výpočet se započtením tlačené výztuže:  $M_{Rm} = 46 \text{ kNm}, F_{Rm} = 55,3 \text{ kN}$ )

## Zadání konstrukce

#### Preprocessing

- Materiály
- Geometrie
- Zatížení
- Parametry výpočtu
   Processing
- Výpočet
- Postprocessing
- Analýza výsledků



## Materiály

- Pokud modeluji skutečné chování konstrukce, používat parametry materiálů ze zkoušek
- Nejsou-li k dispozici střední hodnoty pevnosti, modulu pružnosti (f<sub>cm</sub>, E<sub>cm</sub>) pro danou třídu betonu
- Beton materiál 3D NonLinCementitious 2
- Ocel Elastic Isotropic nebo Bilinear Von Mises
- Výztuž Reinforcement, Smeared Reinforcement

| New material                                                  | x |
|---------------------------------------------------------------|---|
| Material type                                                 | _ |
| 3D Non Linear Cementitious 2                                  |   |
| Plane Stress Elastic Isotropic Plane Strain Elastic Isotropic |   |
| 3D Non Linear Cementitious 2                                  |   |
| 3D Variable Non Linear Cementitious                           |   |

#### 3D NonLinearCementitious 2

- Tah Rankine  $f(\sigma) = \sigma_{\max}(\sigma) f_t \le 0$
- Tlak Menétrey-Willam



## 3D NonLinearCementitious 2

 Vygenerované parametry dle pevnosti betonu (nebo upravit dle výsledků zkoušek)

| 3D Non Linear Cementitious 2          | x                                                                         |
|---------------------------------------|---------------------------------------------------------------------------|
| Material properties generation        |                                                                           |
|                                       |                                                                           |
|                                       | X Cancel                                                                  |
|                                       | Edit material #1:3D Non Linear Cementitious 2                             |
|                                       | Name: Beton                                                               |
|                                       | Basic Tensile Compressive Shear Miscellaneous                             |
|                                       | Elastic modulus E : 3.350E+04 [MPa] Stress-Strain Law Biaxial Failure Law |
|                                       | Poisson's ratio μ : 0.200 [-]                                             |
|                                       | Tensile strength $f_t$ : 2.200E+00 [MPa]                                  |
|                                       | Compressive strength f <sub>c</sub> : -4.300E+01 [MPa]                    |
|                                       | Plane Strain Idealisation *                                               |
| · · · · · · · · · · · · · · · · · · · |                                                                           |
| people.fsv.cvut.cz/www/bilypet1/      | Material #: 1 f_cu- = 4.500E+01 [MPa]                                     |

### **Elastic Isotropic Material**

 Ideálně pružný materiál – např. pomocné ocelové prvky (viz dále)

| Edit material #2:Plane Stress Elastic Isotropic | <b>—</b>              |
|-------------------------------------------------|-----------------------|
| Name: Desky                                     |                       |
| Basic Miscellaneous                             |                       |
| Elastic modulus E : 2.000E+05 [MPa]             | Stress-Strain Law     |
| Poisson's ratio µ : 0.300 [-]                   |                       |
| Material #: 2                                   | ✓ <u>O</u> K X Cancel |

 Nosné ocelové prvky (svařence, kotvy apod.) – používat Bilinear Steel von Mises Material

### **Reinforcement Material**

- Ideální pružnoplastický materiál Bilinear
- Možnost uživatelského zadání přesnějšího chování výztuže – Multilinear

| Edit material #3:Reinforcement       | ×                     |
|--------------------------------------|-----------------------|
| Name: Reinforcement                  |                       |
| <u>B</u> asic <u>M</u> iscellaneous  |                       |
| Type : Bilinear                      | Stress-strain law     |
| Elastic modulus E : 200000.000 [MPa] | _                     |
| σ <sub>γ</sub> : 550.000 [MPa]       |                       |
| Active in compression                |                       |
| Material #: 3                        | ✓ <u>O</u> K X Cancel |

#### Propojení výztuže a betonu

- Plná kompatibilita přetvoření výztuže a betonu
- Posunutí prvků výztuže jsou počítána z posunutí prvků základního materiálu pomocí lineární interpolace:

$$u(r,s,t) = \sum_{i=1}^{n} h_i(r,s,t) \cdot U_i$$

(u(r,s,t) je hledaný vektor posunutí uzlu výztuže,  $h_i(r,s,t)$  je interpolační funkce a  $U_i$  je matice uzlových posunutí základního materiálu)

#### **Smeared Reinforcement Material**

- Rozetřená (smeared) výztuž zadává se směr a stupeň vyztužení
- Nutno předdefinovat v General Data

|                                                                        | New material.Smeared Reinforcement                                                                                                                                                                                        | x  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Layers of smeared reinforcement<br>Number of layers: 1<br>Add E Remove | Name:       Smeared Reinforcement         Basic       Miscellaneous         Type :       Bilinear       Stress-strain law         Elastic modulus E :       200000.000       [MPa] $\sigma_y$ :       550.000       [MPa] |    |
| Add smeared reinf. layer X                                             |                                                                                                                                                                                                                           |    |
|                                                                        | Ratio :       0.00897       [-]       Reinforcement direction         X:       0.0000       [m]         Y:       1.0000       [m]                                                                                         |    |
| people.fsv.cvut.cz/www/bilypet1/                                       | Material #: 4                                                                                                                                                                                                             | el |



Styčníky

• Linie

Makroprvky







#### Ruční zadávání

| ATENA - Atena 2D: YMVB_tes                             | t[D:\YMVB_2D_results.cc2*]                                                                |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| File Edit Input Calculations                           | Options Windows Help                                                                      |  |
|                                                        | ■ <mark>    Q, Q, Q,   4         []    2   (</mark>   1     4   4   4   4   4   4   4   4 |  |
|                                                        |                                                                                           |  |
| + 63 💥 4                                               | N Input 1                                                                                 |  |
| Ln 🔻 3 🔻 + 👻 🗖                                         | 🔆 🔆 Active load case 🔹 🔹                                                                  |  |
| Active LC: (no selection)    Active LC: (no selection) |                                                                                           |  |

 Makroprvky – zadat materiál, šířku konstrukce (2D idealizace), základní velikost prvku MKP, rozetřenou výztuž

| Macro-element # 1.                                                         |                                                                                                                                               | x    |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| Topology<br>Boundary list: 1-4,6,10,15-16                                  |                                                                                                                                               |      |
| FE mesh<br>Mesh type: Quadrilaterals<br>Element size 0.0500 [m]            | Layers of smeared reinforcement          Layer       A         Layer       Material of reinf. layer         > 1       Smeared Reinforcement ▼ | ^    |
| Properties Material Beton Thickness: 0.1750 [m]                            |                                                                                                                                               | ~    |
| Quadrilateral elements:     CCIsoQuad       Image: Geometrically nonlinear | No. of smeared reinf. layers should<br>entered within general data.                                                                           | be   |
| Macro-element # : 1                                                        | 🗸 ок 🗶 Са                                                                                                                                     | ncel |

## Výztuž

#### Zadání opět bodově, počet prutů na šířku kce

| Edit reinforcement bar number 1.                         |                                      |
|----------------------------------------------------------|--------------------------------------|
| Reinforcement Normal                                     |                                      |
| Topology Properties                                      |                                      |
| -Basic parameters                                        | Reinforcement bond                   |
| Material : Reinforcement 💌                               | Connection to the perfect connection |
| Area: 4.021E-04 [m <sup>2</sup> ] Calculate section area | Bar perimeter: 1.0053E-01 [m]        |
| Geometrically nonlinear                                  | Rond material: (undefined)           |
| Calculate reinforcement area                             | inning                               |
| Bar reinforcement<br>Bar diameter 0.0160 [m] Num         | aber of bar, 2                       |
|                                                          | OK Cancel                            |
|                                                          |                                      |
| Reinforcement bar : 1                                    | ✓ OK X Cancel                        |



## Zatížení

Různé typy do různých zatěžovacích stavů => nadefinovat různé ZS pro vl. tíhu, zatížení, podpory

> ATENA - Atena 2D: YMVB test[C:\Dokument\ Edit Input Calculations Options Win

> > Delete selected

数 🔤 🗖 🖸

Input 1

| 燃 Active

52

Dœ~

42

In 👻

Active LC:

29 62

3

LC 3

Assian

- Vybrat patřičný ZS, zadat
- Body Force vlastní tíha na celou kci dle objem. hm. materiálů
- Zatěžování deformací



## Zatížení

- Bodové zatížení a podpory přes roznášecí desky
- Zatížení směřující dolů znaménko "-"
- Zadávat "jednotková" zatížení, ne celkové požadované hodnoty (viz dále)

|                                                                           | [  |
|---------------------------------------------------------------------------|----|
|                                                                           |    |
|                                                                           |    |
|                                                                           |    |
|                                                                           |    |
|                                                                           | 12 |
| Edit prescribed displacements.                                            |    |
| Load case parameters LC #: 2 LC code: Prescribed deformation              | ŧ  |
| C name: Deformace     LC coefficient: 1.0000     Prescribed displacements |    |
| Dir.: [Slobal]                                                            |    |
| Support in dr. X: Frae $V_{W_1}$ : -1.000E-03 [m]                         |    |
|                                                                           |    |
|                                                                           |    |
| e.fsv.c                                                                   |    |

### Výpočtové kroky

- Menu Run => Analysis Steps
- Simuluje proces vnášení zatížení do kce
- Podpory ve všech krocích
- Vlastní tíha pouze v prvním kroku
- Zatížení silou (deformací) příklad: Chci aplikovat X kN (mm) => kvůli stabilitě výpočtu zadám zatížení 1 kN (mm) a aplikuji ho v Y krocích
- Kroky nemusejí být stejně velké

## Výpočtové kroky

| Analysis steps |                           |   |             |    |                       |  |  |
|----------------|---------------------------|---|-------------|----|-----------------------|--|--|
|                | Seznam zatěžovacích stavů | 1 | Coefficient |    | Parameters            |  |  |
| Number         |                           |   | L*J         |    | analysis              |  |  |
| 1              | 1,3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 2              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 3              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 4              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 5              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 6              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 7              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 8              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 9              | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 10             | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 11             | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 12             | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 13             | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 14             | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 15             | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 16             | 2-3                       |   | 1.0000      | St | ndart Newton-Raphson  |  |  |
| 17             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 18             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 19             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 20             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 21             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 22             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 23             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 24             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| 25             | 2-3                       |   | 5.0000      | St | ndart Newton-Raphson  |  |  |
| > 26           | 2-3                       |   | 5.0000      | St | indart Newton-Raphson |  |  |
|                |                           |   |             |    |                       |  |  |

## Výpočtové metody

- Newton-Raphson řešení je řízeno předem daným přírůstkem zatížení (síly, posunu). Obvykle efektivnější, rychlejší.
- Metoda obloukové délky velikost přírůstku zatížení závisí na průběhu iterace, automaticky se upravuje. Využití při analýze mezní únosnosti konstrukce při zatěžování silou (okolí vrcholu a klesající větev diagramu).



## Monitory

- Sledují určitou veličinu v určitém místě konstrukce – analogie tensometrů při zatěžovací zkoušce
- Umožňují vykreslit např. pracovní diagram F-y
- Component 1 = směr x, 2 = y, 3 = z



# Řezy, momentové linie

- Řezy umožní v postprocessoru vykreslit průběh veličin (napětí, přetvoření...) v určitém řezu konstrukce
- Momentové linie umožní v daném řezu integrovat napětí a získat hodnoty vnitřních sil



## Síť MKP

#### Generování přes menu Calculations



- Základní parametry se volí v makroprvcích (viz dříve)
- Pro pravoúhlou geometrii jsou obvykle čtyřhranné prvky efektivnější než trojúhelníkové

## Velikost prvků MKP

- Volba vyžaduje jistý cit, odhad, zkušenosti, optimalizaci...
- Moc prvků zdlouhavý výpočet, problémy s pamětí, singularity
- Málo prvků nepřesné (až zcela nesmyslné) výsledky, problémy s konvergencí výpočtu
- Ohýbané prvky alespoň 4, lépe alespoň 6-8 prvků na výšku nosníku (plynulost změny tuhosti při porušení)

#### Hustota sítě MKP v různých směrech

 Defaultní nastavení: Síť má stejnou hustotu ve všech směrech (dle základní velikosti prvků daného makroprvku)



 To může být někdy neefektivní – příliš mnoho prvků = zbytečně dlouhý výpočet => lze upravit (zahustit síť v D-oblastech a "ve směru změn")

## Hustota sítě MKP v různých směrech

#### Topology – Joint/Line – Mesh Refinement

| Edit line # 15.                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------|--|
| Topology     Springs       Line type : Line     Image: Springs       Joints:     Origin:     4       End:     10 |  |
| Mesh refinement Refinement method: No refinement By size and radius Number of elements Add  Edit  Remove         |  |
| Line # : 15                                                                                                      |  |

## Výpočet

- Před spuštěním ULOŽIT!!! výpočet často padá
- Calculations Analysis
- Vybrat, co se má zobrazovat na diagramu během výpočtu – lze využít monitory a kontrolovat průběh zatěžování

| S | olution Par | ameters        |              |                           |          |            |                         | ×        |
|---|-------------|----------------|--------------|---------------------------|----------|------------|-------------------------|----------|
| Г | Specified a | analysis steps |              |                           |          |            | ish data faa LD disgaan |          |
|   |             | * A            | В            | С                         |          | <b>v</b> . | M2: Prubyb              | -        |
|   | Number      | Analyze        | Save results | State                     |          | <u>^.</u>  | Inc. ct                 | _        |
|   | > 1         | Yes 🔻          | Yes 🔻        | Not analyzed              | <b>^</b> | Y:         | M1: Sila                | <b>_</b> |
|   | 2           | Yes 🔻          | Yes 🔻        | Not analyzed              | Ξ        |            |                         |          |
|   | 3           | Yes 🔻          | Yes 🔻        | Not analyzed              |          |            |                         |          |
|   | 4           | Yes 🔻          | Yes 🔻        | Not analyzed              |          |            |                         |          |
|   | 5           | Yes 🔻          | Yes 🔻        | Not analyzed              |          |            |                         |          |
|   | 6           | Yes 🔻          | Yes 🔻        | Not analyzed              |          |            |                         |          |
|   | 7           | Yes 🔻          | Yes 🔻        | Not analyzed              | -        |            |                         |          |
|   |             |                | 1            | <u>S</u> et result saving |          |            | 🗸 Analyse 🗙             | Cancel   |

## Výpočet



## Hlášky

- Mezi manuály je "Troubleshooting manuál" obsahuje popis spousty hlášek, cenné rady pro ladění modelu
- HASP = klíč s licencí pro ATENU. Bez něj poběží pouze demoverze.



## Hlášky

 Tato hláška je normální po dosažení mezní únosnosti ("pád konstrukce"), v průběhu výpočtu znamená většinou chybu v zadání (např. špatně podepřená konstrukce, chyba v jednotce při zadávání zatížení, špatně přirazený materiál apod.)



#### Postprocessing

- Možnost zobrazit výsledky v jednotlivých zatěžovacích krocích
- Vykreslení grafů monitorů (např. F-y diagram)
- Vykreslení veličin v řezech
- Vykreslení vnitřních sil v momentových liniích

## Kontrola konvergence výpočtu

| ATENA - Atena 2D: Test[D:\test.cc2*] - [Results 1] |                                                                                                                      | <b>₽₽&lt;∕∕ ₽₽X5₩₽5</b> 00  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 🔍 File Edit Calculations Options Windows Help      |                                                                                                                      |                             |
| 🗋 🖨 📕 🕺 Mesh generation                            |                                                                                                                      |                             |
| Step: (under Analysis                              | ±±±    = ▼ 5.0E+01 1 = = =                                                                                           |                             |
| Cracke Bas st                                      |                                                                                                                      |                             |
| Springs Post-processing                            | Analysis information                                                                                                 |                             |
| Scalars Vec Analysis progress information          | Analysis step                                                                                                        |                             |
| Scalars                                            | Analysis step 26                                                                                                     | ▼ Close                     |
|                                                    |                                                                                                                      |                             |
|                                                    | Input   Output   Message   Error                                                                                     |                             |
|                                                    |                                                                                                                      |                             |
|                                                    |                                                                                                                      |                             |
|                                                    | Job: ATENA, Log start: 3.4.2018 15:37:04                                                                             |                             |
|                                                    |                                                                                                                      |                             |
|                                                    | ATENA Version 5.4.1.15046 (c) Cervenka Consulting 1999-2017<br>License Demo                                          |                             |
|                                                    |                                                                                                                      |                             |
|                                                    |                                                                                                                      |                             |
|                                                    | Job: Step 26(26), Log start: 3.4.2018 15:37:04                                                                       |                             |
|                                                    | Iter Eta Disp.Err Resid.Err Res.Abs.E Energy E. (NR)                                                                 |                             |
|                                                    | Iter Eta Unbal. Energy Ratio: Current Required (LS)                                                                  |                             |
|                                                    | Warning: Attempt to constrain node 185 dof: 2 that has been already fixed by 3                                       | load case: 2, BC: 1, LHS BC |
|                                                    | id: 472; new constraint coming from load case: 3, BC: 2, LHS BC id: 464 will )<br>1 1 0.076! 0.78! 0.99! 0.059! (NR) | be ignored.                 |
|                                                    |                                                                                                                      |                             |
|                                                    | 3 1 3.5e-05 0.00025 0.00031 8.6e-09 (NR)                                                                             |                             |
|                                                    | Step: 26(26) completed. Elapsed CPU (sec) - step this: 0.167, all: 4.323                                             |                             |
|                                                    |                                                                                                                      |                             |
|                                                    |                                                                                                                      |                             |
|                                                    |                                                                                                                      |                             |
|                                                    |                                                                                                                      |                             |
|                                                    |                                                                                                                      |                             |
|                                                    |                                                                                                                      | 1                           |

### Zobrazení výsledků

- Vybrat zatěžovací krok => volba Scalars
- Zvolit požadovanou veličinu a způsob zobrazení
- Zapnout/vypnout zobrazení výsledků v řezech
- Zvolit deformovaný/nedeformovaný tvar kce



### Zobrazení trhlin

- Volba Cracks
- Vhodné je omezit šířku zobrazovaných trhlin (trhliny < 0,1 mm nemají praktický smysl)</li>



## Napětí a přetvoření ve výztuži

#### Volba Bar reinforcement

#### Show and label



## Vnitřní síly

- Volba Forces MNQ
- Show and label
- Vybrat veličinu



• M<sub>max</sub> = 42 kNm – odpovídá odhadu => OK

### Grafy

- Menu Windows New Graph
- Zvolit veličiny, možno obrátit osy
- Max. přenesená síla 56,3 kN => OK



#### Porovnání s výsledky zkoušky

- Max. síla odpovídá (56x2 ≈ 120 kN)
- Lineární chování do průhybu cca 15 mm odpovídá
- Průhyb naměřený metrem před destrukcí cca 30 mm odpovídá
- Rozdíly skutečné vs. průměrné materiálové vlastnosti



Trámec 1\_4: Síla (2F) v závislosti na průhybu

people.fsv.cvut.cz/www

# Úkol

- Schéma kce (zadání s Vašimi hodnotami)
- Odhadnout F<sub>Rm</sub> pro zadaný nosník
- Stáhnout a nainstalovat Atenu
- Provést analýzu pro nosník dle Vaše zadání
- Vytisknout a přinést graf Síla-Průhyb
- Porovnat odhadnutou a spočtenou F<sub>Rm</sub>

