2nd task: Two-way slab supported on 4 sides

Elements subjected to bending

One-way slab – (1st task)

Two-way slab supported on 4 sides – **2nd task**

Two-way flat slab – **3rd task**

Two-way slab supported on 4 sides

- The panel is given by the assignment
- Depth $h_{\rm s}$ is given
- Calculate bending moments using linear analysis
- Calculate bending moments using precalculated tables based on the theory of plasticity
- For "plastic" moments, check $h_{\rm S}$
- Calculate load of given supporting element (beam or wall)

Introduction

- Elastic theory always applicable, but usually less fitting; no cracks in the structure
- **Plastic theory** closer to real behaviour of RC structures, but sufficient plastic hinge rotational capacity is necessary; the structure is cracked

Introduction

 Plastic behaviour enables redistribution of internal forces => better utilization of material

- Less fitting, but very simple
- Good for **quick check** of bending moments calculated by more complex theories
- *Idea:* Deflection of the slab in both directions must be the same

- Calculate total design load of the slab $f_{\rm d}$
- The load will be **divided in two directions**:

$$f_d = f_{d,x} + f_{d,y}$$

- We can model the behavior of the slab in each direction as one of the following beam types:
- **Fixed end** = continuity or outer edge with wall
- **Pinned end** (simply supported) = outer edge with beam
- Select the correct beam types for your structure

• As
$$w_x = w_{y_x}$$
 we can say that:

$$k_x \cdot \frac{f_{d,x} l_x^4}{EI} = k_y \cdot \frac{f_{d,y} l_y^4}{EI}$$

- $E_x = E_y$ and $I_x = I_y$ (in both directions, we consider that the cross-section is h_s*1 m)
- After rearranging:

$$\frac{f_{d,x}}{f_{d,y}} = \frac{k_y}{k_x} \cdot \left(\frac{l_y}{l_x}\right)^4$$

• As
$$f_d = f_{d,x} + f_{d,y}$$
, we can say that:

$$\frac{f_{d,x}}{f_d - f_{d,x}} = \frac{k_y}{k_x} \cdot \left(\frac{l_y}{l_x}\right)^4$$

• And after rearranging, we receive **formulas for the loads** in *x* and *y* directions:

• Now we can calculate "linear" bending moments in the slab in each direction

Assumptions for use of the tables based on the theory of plasticity

- Constant depth of the slab
- Rigid supports
- Corners prevented from lifting

- Approximately same load of adjacent panels
- Approximately same spans of adjacent panels
- Sufficient ductility of reinforcement (steel class B, C)
- Sufficient rotational capacity (x/d \leq 0.25)

Plastic analysis

Select the type of the panel

- Calculate ratio of spans
- Look up β coefficients in the table

!!! For all panel types, l_x is the <u>shorter</u> span

Fixed end

mym

mvm

хет

 $\rightarrow \vee$

Pinned end

...etc.

Support condition	Factor	Coefficients β _{&e} , β _{×m} , β _{νe} , β _{νm} , for <mark> </mark> _ν /l _× =							
		1,0	1,1	1,2	1,3	1,4	1,5	1,75	≥2,0
y m xe m xm m ye m ym y	β _‰	-0,031	-0,037	-0,042	-0,046	-0,050	-0,053	-0,059	-0,063
	β _{×π}	0,024	0,028	0,032	0,035	0,037	0,040	0,044	0,048
	β _{γe}	-0,032							-0,032
	β _{ym}	0,024							0,024
^									

Plastic analysis

- Use linear interpolation to calculate β coefficients
- β_y coefficients are constant for all values of l_y/l_x
- Be careful when selecting the type of the panel:

Plastic analysis

• Calculation of bending moments

$$m_{\rm xe} = \beta_{\rm xe} m_0$$
$$m_{\rm xm} = \beta_{\rm xm} m_0$$

$$m_{\rm ye} = \beta_{\rm ye} m_0$$

$$m_{\rm ym} = \beta_{\rm ym} m_0$$
$$m_0 = f_{\rm d} \cdot l_{\rm x}^2$$

!!! Be careful about directions – m_x is the moment in the direction of l_x , the same applies to γ index.

Basic value of bending moment, constant for all moments!!!

- Indices:
 - x, y direction of a moment
 - m midspan moment
 - e support moment

Design of bending reinforcement

- In the homework, you DO NOT HAVE TO design the reinforcement
- BUT remember, that the procedure of design of bending reinforcement for two-way slabs is IDENTICAL to beams (see 3rd seminar)
- You should use the plastic moments for design of reinforcement (closer to real behaviour of RC structure)
- The only difference is that you design the reinforcement in 2 directions and that the width of the cross-section is taken as b = 1 m

Check of *h*_s

- Check the given value of h_s for the biggest moment from **plastic** analysis (m_{Ed,max})
- Calculate the required cross-sectional area of reinforcement:

$$a_{s,rqd} = \frac{m_{Ed,\max}}{0.9df_{yd}}$$

Calculation of effective depth – see 3rd seminar.

Estimate 10 mm rebars and take cover depth from the frame structure

• Estimate the depth of the compressed zone:

Estimation of

$$a_{s,prov}$$
 $x = \frac{1.2a_{s,rgd}f_{yd}}{0.8bf_{cd}}$
For slabs, you generally consider 1 m
wide strip => b = 1000 mm

Check of *h*_s

- Check the span/depth ratio (deflection control) see 1st seminar
- If:
 - 1. $a_{s,rqd} \ge a_{s,min}$ (calculation of $a_{s,min}$ see 3rd seminar) 2. $\xi = \frac{x}{d} \le 0.25$

3. Span to depth ratio is checked then the original h_s is **correct.**

 If some of the conditions are not checked, propose a solution (just describe it, don't calculate anything)

Load of beam/wall

- Draw tributary areas of all the supporting elements
- The angle between identical supports (fixed/fixed, pinned/pinned) is **45**°
- Between fixed and pinned, **60**° go to fixed
- **Calculate the load** of one given supporting element (wall or beam)

Load of beam/wall

- For your given element, draw load diagram (with values, not just the shape!)
- The load in each point is: total load of the slab (f_d) * width of the tributary area

 Be careful – inner walls and beams are loaded by 2 adjacent panels!