1st task:

Frame Structure

Drawing of reinforcement

- Bending moments layout
- Lengths of reinforcement
- Transversal reinforcement of columns (ties)
- Longitudinal section
- Transversal sections

Bending moments layout

- Create an envelope of bending moments in the beam from 2 load combinations

Bending moments layout

- Reduce support moments to values in the face of the column (like in design of reinforcement)

Lever arm of internal
forces, see design of

- Shift the envelope by $a_{l}=\frac{\pi}{2} \cot \theta \quad$ reinforcement

Why the shift is necessary?

- Shear stresses are perpendicular to shear cracks
- Shear force has vertical and horizontal part
- Stirrups are vertical => horizontal part of shear force is carried by bending reinforcement

Lengths of bending reinforcement

- Divide the design bending moment by the number of rebars designed for the cross-section

- 2 outer rebars must have the full length, remaining rebars can be shorter

Lengths of bending reinforcement

- Add anchorage length (calculation - see later)

- For lower reinforcement, at least two outer bars must be extended at least $10 \varnothing$ behind the face of the column

Column ties

- Diameter - estimate:

$$
\varnothing_{\text {tie }} \geq \max \left(\frac{\varnothing_{\mathrm{s}}}{4} ; 6 \mathrm{~mm}\right)
$$

- Basic spacing:

$$
s_{1} \leq \min \left(20 \varnothing_{\mathrm{s}} ; \min \left(b_{\mathrm{col}} ; h_{\mathrm{col}}\right) ; 400 \mathrm{~mm}\right)
$$

- Spacing in lapping area, spacing below beam and above slab in distance $\max \left(\mathrm{b}_{\text {col }} ; \mathrm{h}_{\text {col }}\right)$

$$
s_{2} \leq 0.6 s_{1}
$$

- Calculate lapping length - see later

Column ties

Column ties prevent buckling of reinforcement

Work joints. after concreting of 1st floor, you have to wait some time before you concrete the 2 nd floor => column reinforcement is connected by lapping

Tie/stirrup ends

- To close the tie/stirrup
- Length can be estimated as 10times the tie/stirrup diameter

Drawing of reinforcement

Sections

SECTION A-A (1:20)

SECTION C-C (1:20)

SECTION D-D (1:20)

Layout of moments (the curve must be SYMMETRIC!!!)

+ shapes of rebars

MATERIALS:
CONCRETE C20/25
STEEL B500B
Notes

AXIAL DIMENSIONS OF REBARS

Lapping length

Desing lapping length
Coefficients expressing influence of shape of the end of rebars, cover depth, transverse unwelded rebars and transverse pressure
Coefficient expressing amount of lapped reinforcement

Basic anchorage length

Stress in the reinforcement

Bond stress between the rebars and concrete
Coefficient expressing position of steel bars during concreting. 0.7 for bars more than 250 mm above formwork, 1.0 in other cases
Coefficient expressing diameter of steel bars

Tensile strength of concrete, see table of concrete strengths
$l_{0, \text { min }}=\max \left(0.3 \alpha_{6} l_{\mathrm{b}, \mathrm{rqd}}, 15 \varnothing, 200 \mathrm{~mm}\right) \quad$ Minimum lapping

Anchorage length

- Very similar to calculation of lap length
- Basic anchorage length $I_{\text {b.rad }}$ - see lap length
- Design anchorage length I_{bd}

$$
\begin{aligned}
& l_{\mathrm{b}, \mathrm{~d}}=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5} l_{\mathrm{b}, \mathrm{rad}} \geq l_{\mathrm{b}, \text { min }} \\
& l_{\mathrm{b}, \mathrm{~min}}=\max \left(0.3 . l_{\mathrm{b}, \mathrm{rdd}}, 10 \varnothing, 100 \mathrm{~mm}\right)
\end{aligned}
$$

- There is NOT coefficient α_{6} expressing amount of lapped reinforcement (no lapping)
- There IS α_{4} coefficient expressing effect of transverse welded reinforcement. In our case, $\alpha_{4}=1.0$

