Concrete and Masonry Structures 1

Petr Bílý, office B731

http://people.fsv.cvut.cz/www/bilypet1

- \rightarrow Courses in English
- \rightarrow Concrete and Masonry Structures 1

Office hours: Thu 16:00-16:45

Credit receiving requirements

- General knowledge of design of concrete structures (e.g. 133FSTD – Fundamentals of Structural Design)
- Working out of the homework assigned every week. Homework delivered:
 - the next week 3 points
 - 1 week delay 2 points
 - 2 weeks delay 1 point
 - 3 or more weeks delay 0 points, but you still have to deliver!!!
- Reach at least 24 points out of total of 36 points (12 pieces of homework)

https://eobchod.cvut.cz/ctu study notes/ctu study notes/design procedures for reinforced concrete structures-150028012

CESICE VISIONE UCENI TECHNICKE V PRAZE Fakulta stavebni

DESIGN PROCEDURES FOR REINFORCED CONCRETE STRUCTURES

> Prof. Ing. Janovlav Procházka, CSc. Doc. Ing. Petr Stemberk, Ph.D.

Procházka, Jaroslav: DESIGN PROCEDURES FOR REINFORCED CONCRETE STRUCTURES

Other authors	Štemberk
Faculty	FSv
Version	1.D1.
Year of publishing	12/2012
	Stran: 190, Obrázků: 164
Number of pages	Příloh: 0, CD: 0
Publisher	ČVUT, 01/2013
ISBN	978-80-01-04240-3

Price (Incl.VAT 10 %)	223 CZK	
In Stock	57 pcs	Add to basket
Quantity	1 pcs	

Homework – page layout

- 3 rows: Formula insert numbers evaluate
- Loads in tables
- Draw schemes easier to understand

Rules for structural analysis elaboration

- Well-arranged, clear, controllable
- Page numbers (cross reference to previous calculations and results)
- All calculations, assumptions write down in the analysis
- State formula \rightarrow substitute \rightarrow calculate results, quote units
- Calculation of loads in tables
- Sketches, figures

1st task: Frame Structure

Individual Parameters – see excel spreadsheet

- *R*, *a* [m] distance between supports in the plan (spans)
- *h* [m] floor height
- *n* number of floors
- Concrete class
- Permanent load (except self weight) for typical floor (g-g₀)_{floor,k} [kN/m²]
- Permanent load (except self weight) for roof (g-g₀)_{roof,k} [kN/m²]
- Variable load for typical floor $q_{\text{floor},k}$ [kN/m²]
- Variable load for roof $q_k = 0,75 \text{ kN/m}^2$
- Exposure class related to environmental conditions
- Design working life

Our goal will be to:

- Design dimensions of all elements
- Do detailed calculation of 2D frame calculation of bending moments, shear and normal forces using FEM software
- Design frame reinforcement
- Draw layout of reinforcement

Design of dimensions

- Depth of the slab
- Cross-sectional dimensions of the beam
- Cross-sectional dimensions of the column
- Sketch of the structure

Depth of the slab $h_{\rm S}$

- One-way slab
- Empirical estimation:
- Effective depth *d*:

$$h_{S} = \left(\frac{1}{30} \sim \frac{1}{25}\right)l$$

$$d = h_{s} - c - \frac{\emptyset}{2}$$
Diameter of steel bars, 10 mm
Cover depth

Cover depth c

$$c = c_{\min} + \Delta c_{dev}$$
$$c_{\min} = \max \left(c_{\min,b}; c_{\min,dur}; 10 \text{ mm} \right)$$

- $\Delta c_{dev} = 10 \text{ mm}$ (technology allowance)
- c_{min,b} = 10 mm (cover depth necessary for good mechanical bond between steel and concrete, equal to diameter of steel bars)
- c_{min,dur} see table (cover depth necessary for good resistance to unfavourable effects of the environment)

Values of c _{min,dur} [mm]								
Exposure class related to environmental conditions								
Structural class	XD	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3	
S1	10	10	10	15	20	25	30	
S2	10	10	15	20	25	30	35	
S3	10	10	20	25	30	35	40	
S4 (for 50 years)	10	15	25	30	35	40	45	
S5	15	20	30	35	40	45	50	
S6	20	25	35	40	45	50	55	

Structural class									
Critorian	Exposure class related to environmental conditions								
Cinterion	XD	XC1	XC2	XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3	
Working life 80				incroaco c	Joce by 1				
years		increase class by I							
Working life 100		incroses close by 3							
years		inclease class by Z							
Concrete clace	decrease class by 1 if concrete class is at least:								
CUILLELE LIASS	C20/25	C25/30	C30/37	C35/45	C40/50	C40/50	C40/50	C45/55	
Member with slab		deereese sleep by 1							
geometry									
Special quality	decrease class by 1								
control of concrete				uctica36	ciabo by T				

Depth of the slab $h_{\rm S}$

• Span/depth ratio (deflection control):

 $\lambda = \frac{1}{d} \leq \lambda_{\text{lim}} = \kappa_{c1} \kappa_{c2} \kappa_{c3} \lambda_{d,\text{tab}}$ Effect of shape Effect of span Effect of reinforcement 1.0 1.0 1.2

See table, for slabs

consider the value for 0,5 % reinf. ratio

- If $\lambda \leq \lambda_{min}$, detailed calculation of deflections may be omitted
- However, usually the slab is uneconomical if the condition is satisfied

$\lambda_{d,tab}$ for outer span of the continuous beam/slab

	Concrete class							
ρ	12/15	12/15 16/20 20/25 25/30 30/37 40/50 50/60						
0,5 %	19,0	20,5	22,1	24,1	26	33,5	41,5	
1,5 %	15,9	16,4	16,9	17,6	18	19,5	20,8	

$\lambda_{\scriptscriptstyle d,tab}$ for inner span of the continuous beam/slab

	Concrete class								
ρ	12/15	12/15 16/20 20/25 25/30 30/37 40/50 50/6							
0,5 %	21,9	23,7	25,5	27,8	30,8	38,6	48		
1,5 %	18,3	18,9	19,5	20,3	21	22,5	24		

Depth of the slab $h_{\rm S}$

- Usually the slab is uneconomical if the span/depth condition is satisfied
- => only adjust the empirical design with respect to span/depth ratio, do not try to satisfy this condition
- If $\lambda > \lambda_{min,}$ increase the depth of the slab by some 10 – 40 mm, depending on the difference between empirical design and design according to span/depth ratio

Design of the beam

• Empirical estimation

$$h_{\rm B} = \left(\frac{1}{12} \sim \frac{1}{10}\right) l_{\rm B} \qquad b_{\rm B} = \left(\frac{1}{3} \sim \frac{2}{3}\right) h_{\rm B}$$

• To reach sufficient stiffness of the beam:

 $h_{\rm B} \ge 2.5 h_{\rm S}$

- To avoid troubles during detailed check
- Theoretical maximum values of internal forces in the beam:

• Real internal forces will be lower

- If $\xi \in \langle 0.15 0.40 \rangle$ design is correct
- If $\xi < 0.15 you$ should decrease $h_{\rm B}$ and/or $b_{\rm B}$
- If $\xi > 0.40$ you have to increase $h_{\rm B}$ and/or $b_{\rm B}$

• Preliminary check of reinforcement ratio

• If $\rho_{s,rqd}$ > 0.04 – you have to increase h_B and/or b_B

 Preliminary check of load-bearing capacity in shear ("compression diagonals")

$$V_{\text{Rd,max}} = v \cdot f_{\text{cd}} \cdot b_{\text{B}} \cdot \zeta \cdot d_{\text{B}} \cdot \frac{\cot \theta}{1 + \cot^2 \theta} \ge V_{\text{Ed,max}}$$
Load-bearing
capacity of
compression
diagonals in
shear
$$V = 0, 6 \left(1 - \frac{f_{\text{ck}}}{250}\right)$$

$$Coefficient expressingeffect of shear cracks andtransversal deformations
$$v = 0, 6 \left(1 - \frac{f_{\text{ck}}}{250}\right)$$$$

• If the condition is not checked, you have to increase $h_{\rm B}$ and/or $b_{\rm B}$

- <u>Span/depth ratio</u> (deflection control) same procedure as for slabs
- Select a row in the table for $\lambda_{\text{d,tab}}$ (outer span) according to value of $\rho_{\text{s,rqd}}$ calculated
- If the condition is not checked, you have to increase $h_{\rm B}$ (unlike slabs, it is usually a good idea to meet the span/depth condition for beams)

Dimensions of the column

- Calculate design load in the foot of the column (N $_{\rm Ed})$

$$N_{\rm Ed} \leq N_{\rm Rd}$$

$$N_{\rm Rd} = 0.8A_{\rm c}f_{\rm cd} + A_{\rm s}\sigma_{\rm s} \geq N_{\rm Ed}$$

$$A_{\rm c} \geq \frac{N_{\rm Ed}}{0.8f_{\rm cd} + 0.02\sigma_{\rm s}}$$

=> dimensions of rectangular column

Adjustment of dimensions

- Round dimensions to 50 mm
- Round slab dimensions to 10 mm
- Round beam dimensions to 50 mm
- If the difference between column width and beam width is less than 100 mm, use the bigger dimension for both elements
- Reason: dimensions of formwork systems

Sketch of the structure

For the next week...

- We will focus on detailed calculation of internal forces
- Are you able to use any Finite Element Analysis software?
- If not, check easy-to-use software "Idea Statica" on <u>https://www.ideastatica.com/educational-</u> <u>license/</u>
 - ... and register to get the student licence

Example (different structure!!!)

Two-way slabs supported on four sides

concrete class C30/37, cover depth 25 mm, 6 mm steel bars, 4 floors

Slab depth design

$$h_{s} = \frac{l_{x} + l_{y}}{75} = \frac{7000 + 6000}{75} = 173 \text{ mm}$$
$$d = h_{s} - c - \frac{\emptyset}{2} = 173 - 25 - \frac{6}{2} = 145 \text{ mm}$$

Deflection control: $l/d = 6000 / 145 = 41 \nleq \lambda_{lim} = 1,0*1,0*1,2*30,8 = 37$

= h_s has to be increased

Slab height $h_s = 190 \text{ mm}$

Calculation of loads

Slab los	ad				
			charakteristic	$\gamma_{ m F}$	design
			kN/m ²		kN/m ²
Permai	nent				
	other perman	ent load	0,50		
	self weight	$0,19m \cdot 25kN/m^3$	4,75		
	Total		$g_k = 5,25$	1,35	$g_d = 7,09$
Variab	le				
	(kategorie				
	C1)		$q_k = 3,00$	1,5	$q_d = 4,50$
Total			$(g+q)_k = 8,25$		$(g+q)_d = 11,59$
Roof loa	nd				
			charakteristic	$\gamma_{ m F}$	design
			kN/m ²		kN/m ²
Perman	ent				
	other permaner	nt load	2,00		
	self weight	$0,19m \cdot 25kN/m^3$	4,75		
	Total		$g_k = 6,75$	1,35	$g_d = 9,11$
Variable	e				
	(kategorie C1)		$q_k = 0,75$	1,5	$q_d = 1,125$
Total			$(g+q)_k = 7,5$		$(g+q)_d = 10,24$

Beam

$$h_B = \left(\frac{1}{15} \div \frac{1}{12}\right) l = \left(\frac{1}{15} \div \frac{1}{12}\right) \cdot 7 \cong 0,5 \ m$$

 $h_B \geq 2.5 h_S$

$$b = (0,33 \div 0,5)h = 0,25 m$$

Column

 $A = 6,5 \times 6 = 39m^2$

load from the slab 3x typical floor 3 x 39 m2 x 11,59 kN/m2 = 3x 452 = 1356 kN 1x roof 1 x 39 m2 x 10,24 kN/m2 <u>= 339,4 kN</u> 1755,4 kN load from the beam (0,5-0,19)m x 0,25m x 25 kN/m3 = 0,08 * 25 = 2 kN/m (6,5 + 6)m * 2 kN/m = 25 kNx 4 floors = 100 kNestimate self weight of the column ≈ 25 kN $N_{\rm Ed} = 1755 + 100 + 25 = 1880$ $N_{Ed} = 0.8A_c \cdot f_{cd} + A_s \cdot \sigma_s$ $1880 = 0.8A_{c} \cdot 20000 + 0.02A_{c} \cdot 400000$ min. area: $A_c = 0,078m^2$ column 300 x 300 mm