Concrete and Masonry Structures 1

Petr Bílý, office B731
http://people.fsv.cvut.cz/www/bilypet1
\rightarrow Courses in English
\rightarrow Concrete and Masonry Structures 1

Office hours: Thu 16:00-16:45

Credit receiving requirements

- General knowledge of design of concrete structures (e.g. 133FSTD Fundamentals of Structural Design)
- Working out of the homework assigned every week. Homework delivered:
- the next week - 3 points
- 1 week delay -2 points
- 2 weeks delay -1 point
- 3 or more weeks delay - 0 points, but you still have to deliver!!!
- Reach at least 24 points out of total of 36 points (12 pieces of homework)
https://eobchod.cvut.cz/ctu study notes/ctu study notes/design procedures for reinforced concrete structures-150028012

Procházka, Jaroslav: DESIGN PROCEDURES FOR REINFORCED CONCRETE STRUCTURES

Other authors	Štemberk
Faculty	FSv
Version	1.D1.
Year of publishing	12/2012 Stran: 190, Obrázků: 164, Prilloh: 0, CD: 0
Number of pages	ČVUT, 01/2013
Publisher	$978-80-01-04240-3$

Price (Incl.VAT 10\%)	223 CZK
In Stock	57 pcs
Quantity	1 pcs

Add to basket

Homework - page layout

- 3 rows: Formula - insert numbers - evaluate
- Loads in tables
- Draw schemes - easier to understand

Rules for structural analysis elaboration

- Well-arranged, clear, controllable
- Page numbers (cross reference to previous calculations and results)
- All calculations, assumptions write down in the analysis
- State formula \rightarrow substitute \rightarrow calculate results, quote units
- Calculation of loads in tables
- Sketches, figures

1st task:

Frame Structure

1st task:

Frame Structure

Individual Parameters - see excel spreadsheet

- $R, a[\mathrm{~m}]$ distance between supports in the plan (spans)
- h [m] floor height
- n number of floors
- Concrete class
- Permanent load (except self weight) for typical floor $\left(g-g_{0}\right)_{\text {floor,k }}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
- Permanent load (except self weight) for roof $\left(g-g_{0}\right)_{\text {roof,k }}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
- Variable load for typical floor $q_{\text {floor,k }}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
- Variable load for roof $q_{\mathrm{k}}=0,75 \mathrm{kN} / \mathrm{m}^{2}$
- Exposure class related to environmental conditions
- Design working life

Our goal will be to:

- Design dimensions of all elements
- Do detailed calculation of 2D frame - calculation of bending moments, shear and normal forces using FEM software
- Design frame reinforcement
- Draw layout of reinforcement

Design of dimensions

- Depth of the slab
- Cross-sectional dimensions of the beam
- Cross-sectional dimensions of the column
- Sketch of the structure

Depth of the slab $\boldsymbol{h}_{\mathbf{s}}$

- One-way slab
- Empirical estimation: $h_{S}=\left(\frac{1}{30} \sim \frac{1}{25}\right) l$
- Effective depth d :

$$
d=h_{s}-c-\frac{\varnothing}{2} \quad \begin{gathered}
\text { steel bars, } \\
10 \mathrm{~m}, \\
\text { cover depth }
\end{gathered}
$$

Cover depth c

$$
\begin{gathered}
c=c_{\min }+\Delta c_{\mathrm{dev}} \\
c_{\min }=\max \left(c_{\min , \mathrm{b}} ; c_{\min , \mathrm{dur}} ; 10 \mathrm{~mm}\right)
\end{gathered}
$$

- $\Delta \mathrm{C}_{\text {dev }}=10 \mathrm{~mm}$ (technology allowance)
- $\mathrm{C}_{\text {min,b }}=10 \mathrm{~mm}$ (cover depth necessary for good mechanical bond between steel and concrete, equal to diameter of steel bars)
- $\mathrm{C}_{\text {min,dur }}$ - see table (cover depth necessary for good resistance to unfavourable effects of the environment)

Values of $c_{\text {min,dur }}$ [mm]							
Structural class	Exposure class related to environmental conditions						
	$X 0$	$\times C 1$	$\times C 2 / X C 3$	$\times C 4$	$\times D 1 / \times \mathrm{S} 1$	$\times \mathrm{D} 2 / \times \mathrm{S} 2$	$\times \mathrm{D} 3 / \times \mathrm{S} 3$
S 1	10	10	10	15	20	25	30
S 2	10	10	15	20	25	30	35
S 3	10	10	20	25	30	35	40
S 4 (for 50 years)	10	15	25	30	35	40	45
S 5	15	20	30	35	40	45	50
S 6	20	25	35	40	45	50	55

Structural class

Structural class								
Criterion	Exposure class related to environmental conditions							
	$\times 0$	XC1	XC2	XC3	XC4	XD1/XS1	XD2/XS2	XD3/X53
Working life 80 years	increase class by 1							
Working life 100 years	increase class by 2							
Concrete class	decrease class by 1 if concrete class is at least:							
	C20/25	C25/30	C30/37	C35/45	C40/50	C40/50	C40/50	C45/55
Member with slab geometry	decrease class by 1							
Special quality control of concrete	decrease class by 1							

Depth of the slab $\boldsymbol{h}_{\mathbf{s}}$

See table, for slabs

- Span/depth ratio (deflection control): consider the value for 0,5 \% reinf. ratio

$$
\lambda=\frac{1}{d} \leq \lambda_{\mathrm{lim}}=\kappa_{\mathrm{c} 1} \kappa_{\mathrm{c} 2} \kappa_{\mathrm{c} 3} \lambda_{\mathrm{d}, \mathrm{tab}}
$$

- If $\lambda \leq \lambda_{\text {min }}$ detailed calculation of deflections may be omitted
- However, usually the slab is uneconomical if the condition is satisfied
$\lambda_{\mathrm{d}, \text { tab }}$ for outer span of the continuous beam/slab

	Concrete class						
ρ	$\mathbf{1 2 / 1 5}$	$\mathbf{1 6 / 2 0}$	$\mathbf{2 0 / 2 5}$	$\mathbf{2 5 / 3 0}$	$30 / 37$	$40 / 50$	$\mathbf{5 0 / 6 0}$
$\mathbf{0 , 5} \%$	19,0	20,5	22,1	24,1	26	33,5	41,5
$\mathbf{1 , 5} \%$	15,9	16,4	16,9	17,6	18	19,5	20,8

$\lambda_{\mathrm{d}, \text { tab }}$ for inner span of the continuous beam/slab

	Concrete class						
$\boldsymbol{\rho}$	$\mathbf{1 2 / 1 5}$	$\mathbf{1 6 / 2 0}$	$\mathbf{2 0} / \mathbf{2 5}$	$\mathbf{2 5 / 3 0}$	$\mathbf{3 0} / \mathbf{3 7}$	$\mathbf{4 0 / 5 0}$	$\mathbf{5 0 / 6 0}$
$\mathbf{0 , 5} \%$	21,9	23,7	$\mathbf{2 5 , 5}$	27,8	30,8	38,6	48
$\mathbf{1 , 5} \%$	18,3	18,9	19,5	20,3	21	22,5	24

Depth of the slab $\boldsymbol{h}_{\mathbf{s}}$

- Usually the slab is uneconomical if the span/depth condition is satisfied
- => only adjust the empirical design with respect to span/depth ratio, do not try to satisfy this condition
- If $\lambda>\lambda_{\text {min }}$, increase the depth of the slab by some 10-40 mm, depending on the difference between empirical design and design according to span/depth ratio

Design of the beam

- Empirical estimation

$$
h_{\mathrm{B}}=\left(\frac{1}{12} \sim \frac{1}{10}\right) l_{\mathrm{B}} \quad b_{\mathrm{B}}=\left(\frac{1}{3} \sim \frac{2}{3}\right) h_{B}
$$

- To reach sufficient stiffness of the beam:

$$
h_{\mathrm{B}} \geq 2.5 h_{\mathrm{S}}
$$

Preliminary check of the beam

- To avoid troubles during detailed check
- Theoretical maximum values of internal forces in the beam:

- Real internal forces will be lower

Preliminary check of the beam

- Preliminary check of bending

- If $\xi \in<0.15-0.40>$ design is correct
- If $\xi<0.15$ - you should decrease h_{B} and/or b_{B}
- If $\xi>0.40$ - you have to increase h_{B} and/or b_{B}

Preliminary check of the beam

- Preliminary check of reinforcement ratio

- If $\rho_{\mathrm{s}, \text { rqd }}>0.04$ - you have to increase h_{B} and/or b_{B}

Preliminary check of the beam

- Preliminary check of load-bearing capacity in shear („compression diagonals")

- If the condition is not checked, you have to increase h_{B} and/or b_{B}

Preliminary check of the beam

- Span/depth ratio (deflection control) - same procedure as for slabs
- Select a row in the table for $\lambda_{\mathrm{d}, \text { tab }}$ (outer span) according to value of $\rho_{s, \text { rqd }}$ calculated
- If the condition is not checked, you have to increase h_{B} (unlike slabs, it is usually a good idea to meet the span/depth condition for beams)

Dimensions of the column

- Calculate design load in the foot of the column (N_{Ed})

$$
\begin{gathered}
N_{\mathrm{Ed}} \leq N_{\mathrm{Rd}} \\
\mathrm{~N}_{\mathrm{Rd}}=0.8 \mathrm{~A}_{\mathrm{c}} f_{\mathrm{cd}}+\overbrace{\mathrm{s}}^{0.02 \mathrm{~A}_{\mathrm{c}}} \sigma_{\mathrm{s}} \geq \mathrm{N}_{\mathrm{Ed}}^{400 \mathrm{MPa}} \\
\mathrm{~A}_{\mathrm{c}} \geq \frac{\mathrm{N}_{\mathrm{Ed}}}{0.8 f_{\mathrm{cd}}+0.02 \sigma_{\mathrm{s}}}
\end{gathered}
$$

$=>$ dimensions of rectangular column

Adjustment of dimensions

- Round dimensions to 50 mm
- Round slab dimensions to 10 mm
- Round beam dimensions to 50 mm
- If the difference between column width and beam width is less than 100 mm , use the bigger dimension for both elements
- Reason: dimensions of formwork systems

Sketch of the structure

For the next week...

- We will focus on detailed calculation of internal forces
- Are you able to use any Finite Element Analysis software?
- If not, check easy-to-use software „Idea Statica" on https://www.ideastatica.com/educationallicense/
... and register to get the student licence

Example (different structure!!!)

Two-way slabs supported on four sides concrete class C30/37, cover depth $25 \mathrm{~mm}, 6 \mathrm{~mm}$ steel bars, 4 floors

Slab depth design

$$
\begin{aligned}
& h_{s}=\frac{I_{x}+I_{y}}{75}=\frac{7000+6000}{75}=173 \mathrm{~mm} \\
& d=h_{s}-c-\frac{\varnothing}{2}=173-25-\frac{6}{2}=145 \mathrm{~mm}
\end{aligned}
$$

Deflection control:
$l / d=6000 / 145=41 \not \subset \lambda_{\text {lim }}=1,0 * 1,0 * 1,2 * 30,8=37$
$=>h_{s}$ has to be increased
Slab height $\boldsymbol{h}_{\mathbf{s}}=\mathbf{1 9 0} \mathbf{~ m m}$

Calculation of loads

Beam

$$
\begin{aligned}
& h_{B}=\left(\frac{1}{15} \div \frac{1}{12}\right) l=\left(\frac{1}{15} \div \frac{1}{12}\right) \cdot 7 \cong 0,5 \mathrm{~m} \\
& h_{B} \geq 2.5 h_{S}
\end{aligned}
$$

$$
b=(0,33 \div 0,5) h=0,25 \mathrm{~m}
$$

Column

tributing area
$A=6,5 \times 6=39 m^{2}$
load from the slab
$3 x$ typical floor $3 \times 39 \mathrm{~m} 2 \times 11,59 \mathrm{kN} / \mathrm{m} 2=3 \times 452=1356 \mathrm{kN}$ 1x roof $1 \times 39 \mathrm{~m} 2 \times 10,24 \mathrm{kN} / \mathrm{m} 2=\frac{339,4 \mathrm{kN}}{1755,4 \mathrm{kN}}$
load from the beam
$(0,5-0,19) \mathrm{m} \times 0,25 \mathrm{~m} \times 25 \mathrm{kN} / \mathrm{m} 3=0,08 * 25=2 \mathrm{kN} / \mathrm{m}$
$(6,5+6) \mathrm{m} * 2 \mathrm{kN} / \mathrm{m}=25 \mathrm{kN}$ $x 4$ floors $\quad=100 \mathrm{kN}$
estimate self weight of the column $\approx 25 \mathrm{kN}$
$N_{\text {Ed }}=1755+100+25=1880$
$N_{E d}=0,8 A_{c} \cdot f_{c d}+A_{s} \cdot \sigma_{s}$
$1880=0,8 A_{c} \cdot 20000+0,02 A_{C} \cdot 400000$
min. area: $\quad A_{c}=0,078 m^{2}$
$\rightarrow \quad$ column $300 \times 300 \mathrm{~mm}$

