Effect of Unprotected Interior Beams on Membrane Behaviour of Composite Floor Systems in Fire

Nguyen Tuan Trung (PhD candidate)
nguyentt@ntu.edu.sg

Tan Kang Hai
ckhtan@ntu.edu.sg

School of Civil and Environmental Engineering

18/04/2013

Content

• Benchmarking numerical models
• Literature review on Membrane Behaviour of Composite Slabs in fire
• Objectives
• Test Setup
• Test Results
• Finite Element Analysis
• Discussions
• Conclusion
Benchmarking numerical models

• Limitations of structural tests, scaling effect, objective of tests, boundary conditions, and loading
• Modelling thermal response – such as radiation, convection and conduction
• Structural behaviour:
 • Sensitivity of mesh study
 • choice of finite elements
 • Loading conditions
 • Use of symmetry
• Material behaviour:
 • Range of possible values

Benchmarking numerical models

• Motivations of numerical modeling
 • Understanding the limitations of numerical modelling
 • Test measurements are not continuous
 • Details of stresses and strains at interesting locations are not measured
 • Complex interactions between various components (beams, slabs and columns) cannot be known
 • Triggering sources of failure cannot be clearly observed
 • Failure criteria
 • Collapse mechanisms cannot be clearly defined
Benchmarking numerical models

- Illustration through two physical tests
- Illustration through numerical models
- Comparison of numerical models with physical tests
- Key parameters in composite slab behaviour
 - Effect of leaving interior beams unprotected;
 - Rotational edge-restraint;
 - Bending stiffness of protected main and secondary edge beams;
 - Vertical deflection of protected edge beams;
- Usefulness of numerical modeling
 - Identify key parameters that influence overall behaviour
 - Perform parametric studies
 - Lead to development of design guide

Brief history of testing on composite slabs in fire

Six full-scale tests conducted at Cardington by BRE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Huang et al. (2000) – VULCAN</td>
<td>Zhang NS and Li GQ (2009)</td>
</tr>
<tr>
<td></td>
<td>Franssen JM (2005) – SAFIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCI P288 (Newman GM et al. 2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADAPTIC software</td>
<td></td>
</tr>
</tbody>
</table>

Only a few key references are mentioned!
Experimental Program
Objectives

• Study the effects of some important parameters on the membrane behaviour of composite floor assemblies under fire conditions
 ➢ Effect of leaving interior beams unprotected;
 ➢ Rotational edge-restraint;
 ➢ Bending stiffness of protected main and secondary edge beams;
 ➢ Vertical deflection of protected edge beams;

• Capture failure modes and deformed shapes of the composite beam-slab systems;

• Validate the proposed nonlinear FE models;

Experimental Program
Series I – 3 specimens

- Specimen S1 had the same configuration as S3-FR, but its test setup was different.
- S1 had no rotational restraint beam system on top of the outstands, while S3-FR had. The aim is to study the effect of rotational restraint on the behaviour of beam-slab systems.
Shrinkage reinforcement mesh, 80mm x 80mm grid size and 3mm diameter, was placed within the slabs at 18mm from the top.

Test results of two specimens, S2-FR-IB and S3-FR, are presented. Two unprotected interior beams without any interior beam are shown.

Shrinkage reinforcement mesh, 80mm x 80mm grid size and 3mm diameter, was placed within the slabs at 18mm from the top.

The columns, secondary edge beams (PSB) and main beams (MB) were protected to a prescriptive fire rating of 60min.

S2-FR-IB S3-FR

The columns, secondary edge beams (PSB) and main beams (MB) were protected to a prescriptive fire rating of 60min.
Flexible end plate connections were used.

Test results

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Depth (mm)</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
<th>Yield stress f_y (MPa)</th>
<th>Ultimate stress f_u (MPa)</th>
<th>Elastic modulus E (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2-FR-IB</td>
<td>131</td>
<td>128</td>
<td>6.96</td>
<td>10.77</td>
<td>362</td>
<td>197500</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>80</td>
<td>9.01</td>
<td>9.14</td>
<td>485</td>
<td>206900</td>
</tr>
<tr>
<td>S3-FR</td>
<td>131</td>
<td>128</td>
<td>6.97</td>
<td>11.03</td>
<td>367</td>
<td>211364</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>80</td>
<td>10.26</td>
<td>10.02</td>
<td>487</td>
<td>210645</td>
</tr>
</tbody>
</table>

Test setup

- Rotationally restrained beam system
- Stiffeners
- Reaction frame
- 12-point loading system to simulate UDL
- Electric furnace (3m x 3m x 0.75m) with heating rate of 20°C/min
- Edge and interior beams were enclosed inside the furnace.

Loading value: 15.8kN/m² = a load ratio of 0.43 for S2-FR-IB and 1.97 for S3-FR.
‘Failure’ definition

‘Failure’ was defined as the time when either:

1. Appearance of full-depth cracks (integrity criterion “E”)

2. Significant drop in the mechanical resistance -> the jack could no longer maintain the load level (load-bearing criterion “R”)

Temperature Development
Slab Deflection

S2-FR-iB failed at 177mm and at a mesh temperature of 512°C

S3-FR failed earlier at 115mm and at a mesh temperature of 150°C

S3-FR (no interior beam) experienced larger deflection than S2-FR-iB, and failed sooner.

Enhancement factor: 2.55 (S2-FR-iB) > 1.54 (S3-FR)

Leaving interior beam unprotected did not affect temperature distribution of the edge beams.
Edge Beam Behaviour

Temperature development was very close in two tests. The presence of interior beams did not have any effect on the temperature distributions of the edge beams, but they had effect on their deflection profiles.

At similar temperatures, S3-FR PSB had greater deflection than S2-FR-IB PSB because of the difference in load path from the slabs to the beams.

* MB: main beam
* PSB: protected secondary beam
* USB: unprotected secondary (interior beam)

Compression Ring

The cracks above the edge beams and the diagonal cracks at four corners can be considered as the indication of compression ring.
Compression Ring

- S2-FR-IB: compression ring formed at 200°C (mesh temperature) and at 52mm, 0.95 of the slab depth, after 50min of heating.
- S3-FR: compression ring formed at 100°C (mesh temperature), and at 52mm, equal to 0.95 of the depth, after 30min of heating.

> The compression ring formed at the slab deflection equal to about 1.0 of the slab thickness, irrespective of the presence of interior beams.

- S2-FR-IB (with interior beams) entered TMA later than S3-FR, because the unprotected interior beams enhanced the slab capacity during the bending stage.

Failure Modes: S2-FR-IB

Reinforcement fracture above the edge beams
Failure Modes: S3-FR

'Reinforcement fracture above the edge beams'

'Brittle' failure of compressive ring
Failure Modes: S3-FR

In S2-FR-IB, loads transferred via interior beams to the edge beams. In S3-FR, loads transferred directly to the edge beams. Due to difference in load paths, the interior beams have a major role in helping the slab to transit smoothly from biaxial bending to membrane behaviour.

Without the interior beams, failure of compression ring, "fragile failure", may occur sooner than fracture of reinforcement, resulting in less contribution from TMA in the slab load-bearing capacity.

Proposed Nonlinear FE model

- ABAQUS/Explicit
- Sequentially coupled thermal-stress analysis procedure
- Shell element type S4R
- Concrete Damaged Plasticity Model & Rebar layer technique
- Temperature at the slab bottom surface was input directly into the model to define thermal gradient over the slab thickness.
Concrete Model

- Material properties are based on BS EN 1994-1-2:2005.
- Thermal and creep strains have been taken into account.
- The tension softening curve for concrete in tension proposed by Youssef and Moftah (2007)\(^1\) is adopted, taking account of the reduction in the tensile resistance and the bond strength.

Steel Model

- Material properties are based on BS EN 1994-1-2:2005.
- Thermal and creep strains have been taken into account.
- For reinforcing steel, the reduction factors of cold worked reinforcing steel are used.
Model Validation

Temperature vs. Time

The result for mesh temperature in S3-FR after 22 min was not very good because in S3-FR severe cracks appeared very soon, resulting in significant heat losses.

Model Validation

Deflection vs. Time

The proposed model predicts the behaviour of the beams and slabs very well.
Stress distribution at failure - S2-FR-IB
84min – Slab deflection 177mm at 512°C

- Maximum tensile stress in reinforcement is 425MPa above the main beam and 310MPa above the protected secondary beam.
- TMA was obviously mobilized with the formation of a tensile zone in the slab centre and a ‘compression ring’ consisting of the upper parts of the edge beams and part of the concrete slab directly above the edge beams.

Stress distribution at failure – S3-FR
45min - Slab deflection 115mm at 150°C

- Maximum tensile stress in reinforcement is found at the slab mid-span (Section2), followed by the section above the protected secondary beam (OverPSB).
- The compression ring was not so clearly observed. This is due to ‘fragile’ failure of S3-FR which occurred only at a deflection of 115mm – 1.98d (d is slab thickness).
Strain distribution at top surface at failure

- Maximum strain of concrete at the corners is 0.0356 and 0.0249 for S2-FR-IB and S3-FR, respectively.
- These values are higher than the failure compressive strain according to EN 1994-1-2, which are 0.0223 for S2-FR-IB and 0.0213 for S3-FR at the same temperature.
- It means that at the slab corners, the stress in concrete top surface is almost zero, or failure would occur in these regions.

Failure modes

On the basis of numerical simulations:

- In S2-FR-IB test, reinforcement fracture above the edge beams would occur first, before reinforcement fracture at the slab mid-span. This failure mode concurs with the experimental observations.
- In S3-FR, failure is predicted to be due to fracture of reinforcement at the slab mid-span. Based on the maximum compressive strain of S3-FR, failure would also occur in the slab corners.
- Unfortunately, there is no obvious indication of which failure mode, i.e. reinforcement fracture at the slab mid-span or concrete crushing at the slab corner, would occur first.
Shortcomings of the numerical model

- Final failure modes of the beam-slab substructures could not be exactly identified from the stress or strain contours.
- Partial failures such as concrete crushing and fractures of rebars can not be taken into account.
- Heat loss caused by the appearance of concrete cracks could not be predicted.

Conclusions

1. Understanding the limitations of numerical modelling
2. Details of stresses and strains at interesting locations
3. Complex interactions between various components (beams, slabs and columns)
4. Failure criteria
5. Collapse mechanisms
Conclusions

1. The presence of interior beams greatly enhances the load-bearing capacity of the slab.
 - S3-FR failed sooner with higher deflection (Slide 10);
 - In terms of enhancement factor, S2-FR-IB has a greater enhancement factor (2.55) compared to 1.54 of S3-FR;
2. Without interior beams, the slab may experience ‘brittle’ failure of the compression ring and caused ‘run-away’ failure in the slab.
3. The compression ring formed at the slab deflection equal to 0.95 of the slab thickness, irrespective of the presence of interior beams.
4. The presence of interior beams significantly affects the magnitude as well as the distribution of stresses in the slab elements. This may cause different failure modes for the floor assemblies compared with those of isolated slab panels.

Thank you for your attention!
Validation with Fracof test

FRACOF fire test

Zhao, B., M. Roosef, et al. (2008). Full scale test of a steel and concrete composite floor exposed to ISO fire. SiF’08, Singapore, NTU.

Validation with Fracof test

Time-deflection curves at the mid point of the members

Displacement (mm)

Time (min)
References

