Benchmark modelling of concrete filled structural hollow (CFS) sections

COST TU0904 training school, Luleå, Sweden 12th March 2014

Dr David Rush*

Post-doctoral research associate, BRE Centre for Fire Safety Engineering, University of Edinburgh, Scotland

Prof. Luke Bisby

Arup Chair of Fire & Structures RAEng Research Chair University of Edinburgh

Concrete

Rebar Cage

Benchmark study

- This study assesses the inputs parameters ightarrowrequired to predict the fire resistance of furnace tests on unprotected CFS columns.
- Three stages: ullet
 - 1. Thermal tests on 14 unprotected CFS sections (CFS);
 - 2. Development of a thermal modelling approach to predict the observed temperatures; and
 - 3. Meta-analysis of predicted versus actual fire resistance of 4 exemplar structural furnace tests
- THERMAL TESTS ightarrow
- 14 specimens heated for 2 hours ullet
 - "cooled" for 2 hours
- Temperatures recorded at 4 depths ightarrow
 - Steel
 - Concrete face (within 2.5mm)
 - 35mm from interface
 - Centre of concrete

D

for

Ш

Test results and predictions

- Sensitivity analysis for mesh density performed
 - 2D quarter section
 - D2DC4 main elements
 - Triangular elements at centre
 - Looking for less than 5°C change from previous mesh density
 - Mesh density 9/8/4/4 for A/B/C/D
 - A/B/C are concrete, D is steel

- Test temperatures predicted using Eurocode design guidance:
 - $\varepsilon_f = 1.0; a_f = 25 \text{W/m}^{20}\text{C}, \varepsilon_s = 0.7$
 - thermal conductivity (lower limit), λ ,
 - heat capacity, *c*, (including **10% moisture content**)
 - **perfect contact** at the steel tube-concrete core interface
- Steel temps. over-predicted, concrete both under-and over- predicted (sometimes by over 400°C) depending on location

New modelling approach

- Same mesh used for section
 - Additional elements outside to simulate furnace temps
 - GAPCON.f subroutine used to transfer heat
 - Through heating and cooling

New model produced:

- *E_f* = 0.38 (calibrated from one test specimen)
- $a_f = 25W/m^{2o}C;$
- *ɛ_s* = temperature dependant (Papoloski and Liedquist);
- upper limit thermal conductivity, λ ,
- New concrete specific heat capacity model ; and
- Gap conductance between the steel tube and concrete core as suggested by Ghojel.
- 1200 SO-834 A chual 1000 Combi 1 35mm 800 [emperature (°C) CC 600 400 200 90 120 30 60 Time (minutes)

Fire resistance predictions

- Four exemplar columns from database of over 380+ furnace tests
- Fire resistance predicted using EC4 Annex H
 - Obtain temperature profile
 - Calculate load capacity (Assume $\varepsilon_a = \varepsilon_c = \varepsilon_{tot}$; $N_{fi,Rd} = N_{fi,cr} = N_{fi,pl,Rd}$)

ample	C/S	d or b	t _w	L	N _{fi, Rd}	N _{fi, Rd}	Observed		Predicted	
						/ N _{Rd}	FR	$\boldsymbol{\vartheta}_a$	FR	$artheta_a$
EX		mm	mm	m	kN		mins	٥C	mins	٥C
1	С	273.1	5.6	3.81	574	0.26	112	960	117	1008
2	С	168.3	4.8	3.81	218	0.23	56	896	55	854
3	S	350	10	3.6	4560	0.54	51	749	45	726
4	S	160	36	36	820	0 48	25	670	29	676

Thank you for your attention Any questions?

Contact: d.rush@ed.ac.uk

Link to full PhD thesis: www.era.lib.ed.ac.uk/handle/1842/8298

