Integrated Fire Engineering and Response COST ACTION TU0904

12-15 March 2014, Lulea

ROTATIONAL CAPACITY OF DAMAGED AND UNDAMAGED STEEL I-BEAMS AT ELEVATED TEMPERATURES

Daphne Pantousa, PhD

Professor Euripidis Mistakidis

Laboratory of Structural Analysis and Design Department of Civil Engineering, University of Thessaly, Volos, Greece

Introduction-Description of the problem

- The global plastic analysis of steel structures requires that at the plastic hinge locations, the cross sections of the members should have rotational capacity greater than the required one
- This problem is handled through the classification of the cross sections
- Several factors may affect the rotational capacity of steel members under fire conditions
- These parameters may lead to premature occurrence of local or lateral torsional buckling in the plastic range, therefore limiting the available rotational capacity

Validation of the numerical model

The structural system

The structural system that is used for the validation is referred to a typical beam specimen of the experimental study by R.B. Dharma and K.H. Tan

The numerical model

- ✓ three-dimensional numerical model is developed using the nonlinear finite element code MSC-MARC
- \checkmark four-node, thick-shell elements
- ✓ the nonlinear elastic-plastic stress-strain relationship of steel at elevated temperatures is taken into account
- ✓ Initial imperfections are incorporated in the geometry of the steel beam for a more realistic assessment of its behaviour

Laboratory of Structural Analysis and Design

Validation of the numerical model

<u>First stage</u>: the steel beam is heated with a heating rate equal to 7° C/min until the desired temperature T=415°C is reached.

During the heating stage the temperature is uniform along the member.

<u>Second stage</u>: the temperature remains constant and the beam is submitted to loading at mid-span until failure

Comparison between experimental and numerical results

Laboratory of Structural Analysis and Design

EFD

- \checkmark The modelling methodology is further used:
 - in order to conduct parametric analyses for different amplitudes of initial imperfections
 - for the evaluation of the ductility of the structural members that are damaged due to cyclic loading
- ✓ The cyclic loading is used in order to simulate the damage that may be induced in the members due to seismic excitation.

Laboratory of Structural Analysis and Design

Rotational capacity at elevated temperatures for undamaged beams

- ✓ The rotational capacity of beams at elevated temperatures is obtained through virtual three point bending tests.
- $\checkmark\,$ The numerical analysis has two different stages
- $\checkmark\,$ The numerical test is displacement controlled

Laboratory of Structural Analysis and Design

Rotational capacity of pre-damaged due to cyclic loading beams at elevated temperatures

- \checkmark The numerical analysis has three different stages.
- The first stage is the cyclic loading which introduces some level of damage at the mid-span of the beam in order to simulate the damage that can be induced in the beam during the earthquake loading
- In the second stage the temperature increases until the desired level is reached
- \checkmark The monotonic loading stage follows, while the temperature remains constant.

Five different cyclic loading patterns are studied

Laboratory of Structural Analysis and Design

Rotational capacity of pre-damaged due to cyclic loading beams at elevated temperatures

Laboratory of Structural Analysis and Design

Thank you for your attention

Laboratory of Structural Analysis and Design Department of Civil Engineering, UTH, web page: http://lsad.civ.uth.gr

