

## Advanced Fire Engineering in Practice Software Tools

FDS – CFD Analysis Of Temperature Development In An Enclosure From A Fire With A Defined Heat Release Rate - Benchmark case -

## Kalliopi Zografopoulou, M.Sc., Doctoral Candidate Professor Euripidis Mistakidis



Laboratory of Structural Analysis and Design Dept. of Civil Engineering - University of Thessaly Volos, Greece, web page: http://lsad.civ.uth.gr



Kalliopi Zografopoulou



- Introduction
  - Experiment Geometry Fire
- Results

2151

- Model
- Software
- Geometry
- Materials
- = Fire
- Computational
  Mesh
- · Analysis
- . Results

Summary
 Kalliopi Zografopoulou



# Benchmark case

Based on the experiments of Lonnermark and Ingason (Brandforsk project, 2005)

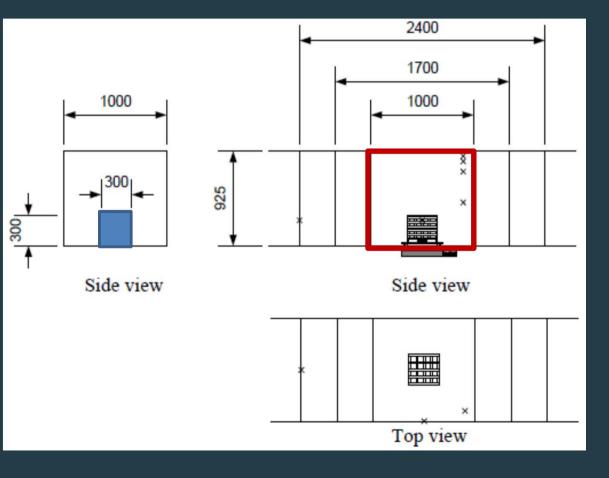
A series of experiments was performed to test the influence of the compartment's dimensions on the fire development

The test with the smallest enclosure dimensions of 1.00 x 1.00 x 0.925 m is used as the benchmark case



- Experiment
- Geometry
- **-** Fire

Results


IModel

- Software
- Geometry
- Materials
  - Fire
- Computational Mesh
  - Analysis
  - Results

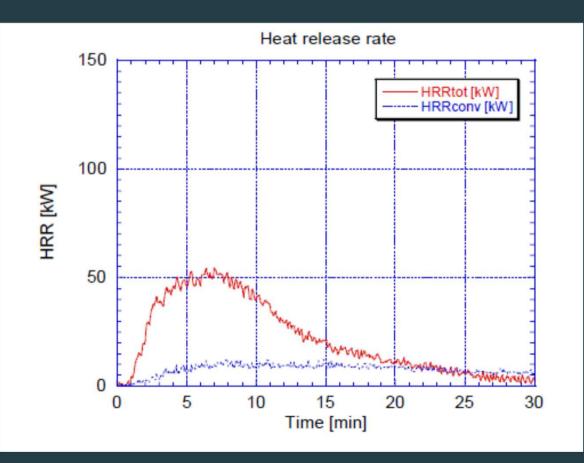
Summary
 Kalliopi Zografopoulou



## Enclosure 1.00 x 1.00 x 0.925 m Opening of 0.30 x 0.30 m






- Experiment
  - Geometry
- Fire
- Results
  - Model
  - Software
- Geometry
- Materials
- Fire

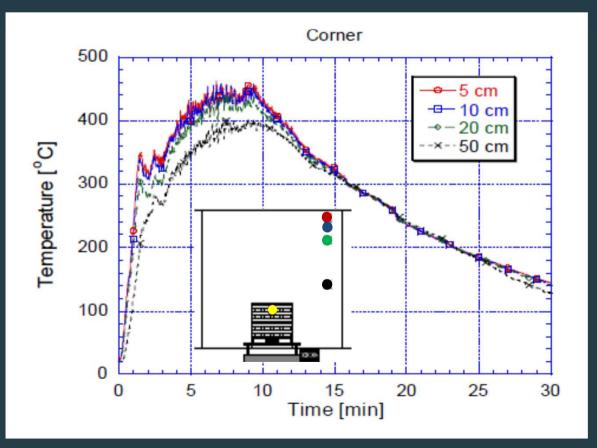
- Computational Mesh
- Analysis
- Results

Summary
 Kalliopi Zografopoulou

## Integrated Fire Engineering and Response

## Wood crib Recorded Heat Release Rate






- Experiment
  - Geometry
- Fire
- Results
  - Model
- Software
- Geometry
- Materials
- Fire
- Computational Mesh
- Analysis
- Results

**Summary** Kalliopi Zografopoulou



## Recorded temperature—time histories by five thermocouples in the enclosure





Experiment

- Geometry
- Fire

Results

## Model


- Software
- Geometry
- Materials
- = Fire
- Computational Mesh
- Analysis
- Results
- Summary Kalliopi Zografopoulou



## Fire Dynamics Simulator (FDS)

Computational Fluid Dynamics code for the simulation of thermally driven flows with an emphasis on smoke and heat transport from fires.

- Direct Numerical Simulation (DNS)
- Large Eddy Simulation (LES)



- Experiment
- Geometry
- **-** Fire

Results


## Model

- Software
- Geometry
- Materials
- **e Fire**
- Computational Mesh
- Analysis
- Results

# Summary Kalliopi Zografopoulou



## The same as in the experiment





- Experiment Geometry Fire
- Results


#### Model

- Software
- E Geometry
- Materials
- Fire
- Computational Mesh
- Analysis
- Results
- Summary
  Kalliopi Zografopoulou



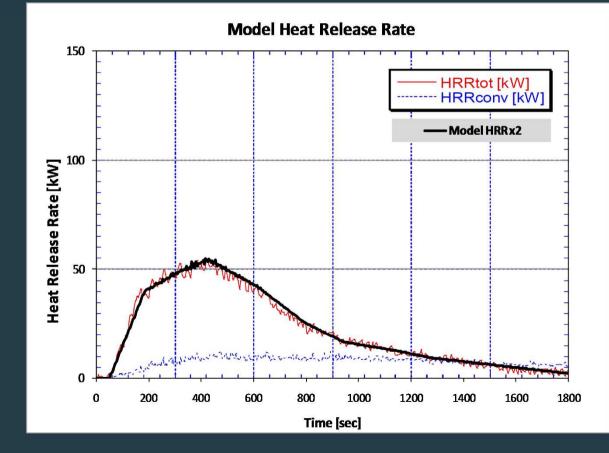
## Wall Materials

| Gypsum Plaster             |        |  |
|----------------------------|--------|--|
| Specific Heat [kJ/(kg. K)] | 0.84   |  |
| Conductivity [W/(m.K)]     | 0.48   |  |
| Emissivity                 | 0.90   |  |
| Absorption Coeff. [1/m]    | 0.0005 |  |



- Experiment
- Geometry
- **-** Fire

Results


### Model

- Software
- Geometry
- Materials
- Fire
- Computational Mesh
- Analysis
- e Results

Summary
 Kalliopi Zografopoulou



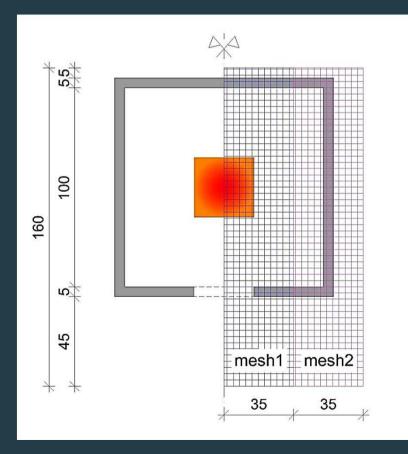
# Heat Release Rate curve of the experiment as input





- Experiment Geometry
- Fire

Results


#### Model

- Software
- Geometry
- Materials
- e Fire
- Computational Mesh
- Analysis
- Results

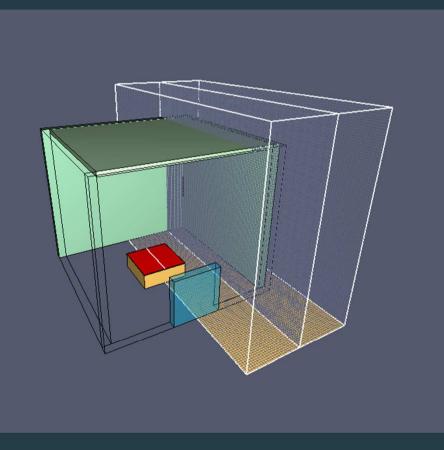
Summary
 Kalliopi Zografopoulou

## Integrated Fire Engineering and Response

## Two parallel meshes 2x259.200 cells of 0.01x0.01x0.01 m Half of the model simulated - symmetry






- Experiment Geometry Fire
- Results

#### Model

- Software
- Geometry
- Materials
- Fire
- Computational Mesh
- Analysis
- Results
- Summary
  Kalliopi Zografopoulou

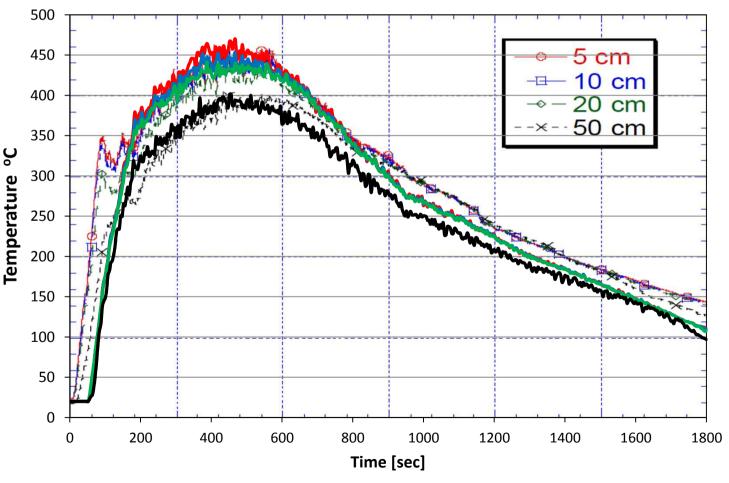


- Large Eddy simulation
- Simulation time 1800 sec
- Simulation time step  $\leq$  0.1 sec





- Experiment Geometry Fire
- Results


- Model
- Software
- Geometry
- Materials
- e Fire
- Computational Mesh
- Analysis

#### Results

Summary
 Kalliopi Zografopoulou



Model predicted temperature - time histories





- Experiment Geometry Fire
- Results

- Model
- Software
- Geometry
- Materials
- Fire
- Computational Mesh
- Analysis
- Results
- Summary

Kalliopi Zografopoulou



## ✓ Relatively simple problem

- Basic problem of temperature calculation from a defined fire (HRR curve)
- Most parameters set to default values
- Easy to replicate
  - Compared to experimental results

## Benchmark problem



## Thank you for your attention

## E-mail: kazograf@gmail.com



Laboratory of Structural Analysis and Design Dept. of Civil Engineering - University of Thessaly Volos, Greece, web page: http://lsad.civ.uth.gr

