

FSC Fire Safe Consultant

> Urska Bajc Malgorzata Snela Naveed Iqbal

Smart Move

Scenario 1

Scenario 2

Departure rate: 60 person/min

	Scenario 1	Scenario 2
Top floor evac. (min)	3:30	3:30
Second last floor evac. (min)	3:30	3:30
Total evac. (min)	7:15	7:20

FDS

Assumptions:

- Office building
- Fire underneath the balcony
- Medium flow rate [$\alpha = 0.0117$]
- 30 % smoke spread through the radiation

FDS

FDS

LS-DYNA

Temperature-time curves:

LS-DYNA

Assumptions:

- ISO fire curve
- Bottom expsoure of the balconey
- Steel beam weight 93 kg/m
- Concrete slab density 25 kN/m³
- Dead load 2 kN/m²
- Live load 5 kN/m²

Heat transfer Analysis \rightarrow temperature-time curves \rightarrow coupled temperature-disp model

Conclusions:

- Scenario 2 evacuation is more realistic and preferable as it causes less congestion
- Ventalition system is not effective and there has to be mechanical ventilation
- Increasing the hole size that supplies fresh air to the atrium can improve air flow
- The results from LS-DYNA are only upto the time of evacuation of the top floor but the assumption is that the structure will hold itsself before total evacuation

Thank you for your attention!

