D^{3} design
 Design of an atrium

COST TU0904 training school, Luleå, Sweden 15th March 2014

David Rush*
Domenico Sannino
Helder "David" Craveiro

SMARTMOVE - egress simulations

Scenario B-1 stair, 3m width at one end

	Hand Calculations	SMARTMOVE
$5^{\text {th }}$ Floor Evacuation	- Last person starts to exit - 200 seconds - max distance from room exit -25 m - 20 m from exit to start of stair - $45 \mathrm{~m} / 1.3 \mathrm{~m} / \mathrm{s}-35$ seconds - 235 secs top floor evacuation 3 mins 55 secs	3 min 50 secs
$4^{\text {th }}$	- Length of stair $-7 \mathrm{~m}(0.9 \mathrm{~m} / \mathrm{s})-8$ seconds - Stair to stair $-24.5 \mathrm{~m}(1.3 \mathrm{~m} / \mathrm{s})-19$ seconds 4 min 22 secs	4 mins 14 secs

Total evacuation

Hand Calculations

Flow calculations

Quickest

- First person leaving will leave at $1 p / s e c$
- After 27 secs flow increase to $2 \mathrm{ppl} / \mathrm{sec}$
- After 54 secs flow is at $3 \mathrm{ppl} / \mathrm{sec}$
- After 81 secs flow is still at $3 \mathrm{ppl} / \mathrm{sec}$ max flow at exit (2 m wide, reduced to 1.5 m for people to move, each person 0.5 m wide)
- In 81 secs - 162 people leave
- If we assume that everyone else leaves at $3 \mathrm{ppl} / \mathrm{sec}$
- 1000-162 = 838 ppl left
- $838 / 3=280$ secs
- $280+81=361$ secs
- Shortest time to start exiting (1st floor to exit)40 secs
- Total 401 seconds

6 mins 41 secs

Slowest

- Assume that end flow is same as initial flow
- 81 secs 162 people leave at start and end of flow
- 1000-162-162 = 676 ppl left
- $676 / 3=226$ secs
- $226+81+81=388$ seconds
- Longest time to start exiting 60 seconds (room corner 1st floor to exit)
- Total 448 seconds

FDS - smoke simulations

- Scenario B
- 2MW fire, Under balcony, Natural ventilation
- 6 no. $1.5 \mathrm{~m} \times 1 \mathrm{~m}$ openings in roof (2 rows of three openings)
- $9 \mathrm{~m}^{2}$ of ventilation
- 1 opening in wall ($2 m \times 2 m$ door on ground floor)
- Results
- $5^{\text {th }}$ Floor visibility $>70 \%$ after 3 mins 15 secs - Less than evacuation calculations
- $4^{\text {th }}$ Floor visibility $>70 \%$ after 3 mins 41 secs - Less than evacuation calculations
- Max gas temps of slice in middle of room $83^{\circ} \mathrm{C}$
- Not enough bouyancy to drive gases through natural ventilation systems
- Beam detectors - time=180 s-300 persons can evacuate the building;
- Considering slice files for the visibility -situation may not be that critical -
- In general the observed visibility is equal or greater than 25 min.

Issues not considered:

No toxic gas analysis

Don't know height of smoke on each balcony

Recommendations:

Mechanical smoke control (maybe in walls rather than ceilings as building is high) Increase the exit width of the building to match the stair width of 3 m

LS-DYNA - structural modelling

- Scenario B
- ISO fire
- Hot bottom only
- 100\% load
- Minimum of 30 mins for fire fighters
- Results
- First model didn't work
- $\quad 2^{\text {nd }}$ analysis crashed at 4am
- 196 secs of time assessed
- Balcony goes UP 10 cm after 3 minutes due curvature and axial elongation of hot bottom flange?
- NOT CORRECT!
- Recommendations
- Protect steel with intumescents?
- Increase size of steel members?
- Redo the analysis

Thank you for your attention Any questions?

Contacts:
David Rush:

Helder David Craveiro:
Domenico Sannino:

