Integrated Fire Engineering and Response

COST action network number TU0904 in domain Transport and Urban Development

Training School on 12-15 March 2013

Winter Training School Lulea, Sweden "The Scenario"

The Idea of the Training School

The Past

- In Malta and Naples the training schools were very much theory and research.
- The first purpose was to give the students a chance to listen to experience, advice and ideas of some of the leading figures in fire engineering (and me) to get a flavour for what else is important a outside of the their own PhD research.
- The second purpose was for the students to share their respective research with their peers and the scholars.

The Idea

- After two successful training school following the same model with different students we wanted to try something new.
- The idea was to give the students some hands-one experiences with the practical application of advanced fire engineering methods on a (somewhat) realistic scenario.

Advanced Fire Engineering

Fully Performance-based Fire Engineered Solutions

- The focus is on achieving life safety for occupancy and the emergency services.
- Involves
 - the prediction of the fire and smoke development,
 - the escape of the **people** and
 - the response of the **structure**.
- Used to design
 - smoke management systems and active fire fighting measures,
 - internal layouts and number and size of stairs and
 - design and fire protection of the structure.
- Only done to the full extent for a small number of **complex buildings**.
- Often the **ASET RSET** Method is used to demonstrate life safety.

ASET - RSET

Available Safe Escape Time - ASET

- This is the time during which tenable conditions are maintained within the escape routes of the building. This means
 - acceptably **low** concentration of **toxic gases**,
 - acceptably low temperatures,
 - sufficient visibility and
 - sufficient structural **stability**.
- The ASET can be calculated with a wide range of methods of varying degree of complexity. Starting from simple hand calculations over complex computational fluid dynamics and combustion modelling (CFD) and non-linear finite element analysis (FEA) to full-scale experiments.

ASET - RSET

Required Safe Escape Time - RSET

- This is the time which is needed for the occupants of the building to leave the building and to allow search and rescue missions of the emergency services.
- The RSET can be calculated with a wide range of methods of varying degree of complexity. Starting from static people flow hand calculations over full agent-based numerical people flow simulations to full-scale experiments.
- **Consultation** with the **fire brigade** is essential to allow for their time requirements.

The ASET needs always to be larger than the RSET

Time as Measure

Temperature

Time to global/progressive collapse or unacceptable collateral damage. This will vary in accordance with the acceptance of society.

What will you do?

- Perform a concept ASET RSET assessment of a (sort of) realistic atrium building.
- To do so you will first split into 9 groups of 3-4 people by picking group numbers from a hat/bowl/bucket.
- Each group will be a fire engineering consultancy and you will have to give your group a name.
- During the rest of the morning you will get an introduction to
 - Smoke and fire modelling with **FDS**,
 - People flow modelling with **SMARTMOVE** and
 - Structural modelling with LSDYNA

What will you do?

- Buro Happolo
- Starting from tonight each group will have 3.5 hours of guided tutorial to perform the required analyses to enable you to conduct an ASET-RSET assessment.
- Each group will be given different predefined input parameters to ensure a variety of solutions.
- Given the very **short time** available and time intensive numerical calculations the analyses will have to be **relatively crude** but should give you an idea what the likely outcome will be if a more detailed assessment is conducted.
- Not all combinations of scenarios will lead to a safe design and there will not be enough time to rerun the models until every group has a safely working design.
- It is therefore required that you use engineering judgement to suggest what changes are required to make the design work.

The Task - 3

What will you do?

- On the last day you will have time in the morning to combine the results and to prepare a short 10 minutes presentation in which you will show
 - your input scenarios,
 - your modelling **results**,
 - your interpretation of the results as an ASET-REST assessment and
 - any suggestion to make the design **more efficient** or **safer**.
- A panel of judges might ask questions and will award prices to the best consultancy firms.

The Scenario

- The scenario will be a 21m six storey high atrium.
- It will have open escape balconies which lead to rooms adjacent to the atrium (not to be modelled).
- There will be 1 or 2 stairs leading to the ground floor allowing people to escape from the balconies.
- There will be a smoke control system with extract at the top and make-up air at the bottom.
- There will be a **localised fire** at the base of the atrium in different locations.

The Scenario

- The input parameters for each group will be given at the beginning of each hand-on tutorial session
- Please allow for 30 minutes for the fire brigade to arrive and conduct the search and rescue mission.
- You can assume that the fire fighters wear a breathing apparatus.

Time	FDS – F441	SMARTMOVE – F445	LS-DYNA – E531
13.03: 18:30 – 22:00	G1	G2	G3
14.03: 8:30 – 12:30	G2	G3	G1
14.03: 13:30 – 17:30	G3	G1	G2

Group	FDS	SMARTMOVE	LS-DYNA
G1.1	А	А	А
G1.2	В	В	В
G1.3	С	С	С

Group	FDS	SMARTMOVE	LS-DYNA
G2.1	A	В	A
G2.2	В	С	В
G2.3	С	A	С

Group	FDS	SMARTMOVE	LS-DYNA
G3.1	А	В	С
G3.2	В	С	A
G3.3	С	A	В

Hands-on Session - FDS

Scenario	Fire location	Fire growth rate	Max. HRR	Type of smoke extract	Extract rate / area	Inlet rate / area
A	GF - centre of atrium	medium	2 MW	natural		
В	GF - underneath the balcony	medium	2 MW	natural		
С	GF - underneath the balcony	medium	2 MW	mechanical		

Hands-on Session - SMARTMOVE

Scenario	Number of stairs	Stair width	Location of stair	Number of people per level
A	1	2m	at one end only	
В	1	3m	at one end only	
С	2	2m	at both ends	

Hands-on Session – LS-DYNA

Scenario	Type of Fire	Position of fire exposure	Structural loading
А	ISO	Top and bottom	100%
В	ISO	Bottom only	100%
С	ISO	Bottom only	150%

The Scenario

Good Luck!

