COST action network number TU0904 in domain Transport and Urban Development

TRAINING SCHOOL , June 6-9 2013, Naples

Current Research at University of Naples

- > Structural behaviour of composite steel-concrete buildings in fire
- Simplified fire design methods for steel-concrete composite members (e.g. Annex F of EN1994-1-2)
- Fire tests and theoretical analysis of concrete slabs reinforced with FRP bars (will be presented by Antonio Bilotta in TS)
- > Applications of Structural Fire Safety Engineering to car parks
- FSE and Fire Risk Assessment approach (will be presented by Iolanda Del Prete in TS, but some general concepts will be given in this presentation)
- WG1 <u>Emidio Nigro</u>
- WG2 Giuseppe Cefarelli
- *WG3 Antonio Bilotta Iolanda Del Prete Anna Ferraro Domenico Sannino*

Di.St. – Department of Structures for Engineering and Architecture University of Naples "Federico II" Naples, ITALY

Structural behaviour of composite steel-concrete buildings in fire

Structural behaviour of composite steel-concrete buildings in fire

SEISMIC ZONE	SECTION TYPE	E	a a <u>1</u> 2001	SINGLE MEMBER ANALYSIS				
	Beam	Column	FIR E SCENARIO	Collapse time	Failure section			
	HE260B	HE500B	anting in the start	111 min	•			
2	9.5 B.P		- Andrew -	111 min				
	HE240B	HE280B	1. Hadiskadiskad	60 min				
•	22,20			116 min				

Full-scale experimental fire tests on concrete slabs reinforced with FRP bars

Full-scale experimental fire tests

Observations after testsSlabs S4-S5-S6: Fiber failure at midspanInside the furnace: bars $c = 51mm, L_{unexp} = 500mm$

Section: end of slab

Application of FSE to Car Parks of C.A.S.E. Project for L'Aquila

C.A.S.E. Project – L'Aquila (Italy)

Open car park

Design Fire Scenarios

Localised fire (Pre-flashover) From INERIS (2001) guideline_

RHR curves From CEC agreement 7215-PP/025

Structural models

Global analyses with non linear software SAFIR2007_

3D-Detailed analyses with software ABAQUS/standard

Global Analyses Results

TRAINING SCHOOL, June 6-9 2013, Naples

Selection of Fire Scenarios and Performance Levels through Fire Risk Assessment Approach

Emidio Nigro

Di.St. – Department of Structures for Engineering and Architecture University of Naples Federico II Naples, ITALY

Introduction: Fire Safety Engineering

The "Fire Safety Engineering" (FSE) is the application of engineering principles, rules and expert judgement based on a scientific assessment of the fire phenomena, the effects of fire and both the reaction and behaviour of peoples, in order to:

- save life, protect property and preserve the environment and heritage,
- quantify the hazards and risks of fire and its effects,
- evaluate analytically the optimum protective and prevention measures necessary to limit, within prescribed levels, the consequences of fire (ISO/TR 13387-1).

A branch of Fire Safety Engineering is the Structural Fire Engineering.

Structural Fire Engineering deals with specific aspects of passive fire protection in terms of analysing the thermal effects of fires on buildings and designing members for adequate load bearing resistance and to control the spread of fire (C. Bailey).

Italian performance-based code

Fire Safety Performance Levels

Fire Safety Goals

The main objective of fire safety checks concerns the mechanical resistance and stability, in fire situation, of the structure.

STAGE I: Preliminary Analysis Definition of fire safety goals Level I fire resistance is not required, where consequences are acceptable or where risk is negligible Definition of fire safety performance levels Definition of fire safety performance levels maintaining the fire resistance requirements, which ensure the lack of partial and/or complete structural collapse, for a sufficient time with evacuation of occupants Approval of design fire scenarios by Italian Fire Brigade (Vigili del Fuoco) Level II maintaining the fire resistance requirements, which ensure the lack of partial and/or complete structural collapse, for a sufficient time with ewacuation of occupants Stage II: Quantitative Analysis Choice of model Level IV Imited damage of the structures after fire exposure Level IV Level IV Imited damage of the structures after fire exposure Level V complete servicebility of structures after fire exposure		Project definition					
Performance levels Level II maintaining the fire resistance requirements, which ensure the lack of partial and/or complete structural collapse, for a sufficient time with evacuation of occupants Approval of design fire scenarios by Italian Fire Brigade (Vigili del Fuoco) Level III maintaining the fire resistance requirements, which ensure the lack of partial and/or complete structural collapse, for a sufficient time with evacuation of occupants Level III maintaining the fire resistance requirements, which ensure the lack of partial and/or complete structural collapse, for a sufficient time with emergency management SIAGE II: Analyses results Level IV Selection of final design Level IV limited damage of the structures after fire exposure Level V complete servicebility of structures after fire exposure	STAGE I: Preliminary Analysis	Definition of fire safety goals Definition of fire safety	Level I	fire resistance is not required, where consequences are acceptable or where risk is negligible			
Approval of design fire scenarios by Italian Fire Brigade (Vigili del Fuoco) Choice of model Analyses results Stage II: Quantitative Analysis Design documentation		Selection of design fire scenarios	Level II	maintaining the fire resistance requirements, which ensure the lack of partial and/or complete structural collapse, for a sufficient time with evacuation of occupants			
STAGE II: Analyses results Quantitative Selection of final design Design documentation Level IV	Approval of design fi Brigade (\	re scenarios by Italian Fire /igili del Fuoco)	Level III	maintaining the fire resistance requirements, which ensure the lack of partial and/or complete structural collapse, for a sufficient time with emergency management			
Level V complete servicebility of structures after fire exposure	STAGE II: Quantitative Analysis	Analyses results	Level IV	limited damage of the structures after fire exposure			
		Design documentation	Level V	complete servicebility of structures after fire exposure			

Fire Safety Goals

The main objective of fire safety checks concerns the mechanical resistance and stability, in fire situation, of the tower.

Selection of Design Fire Scenarios through Fire Risk Assessment

Fire Scenario

qualitative description of the development of a fire with time identifying key events that characterise the fire and differentiate it from other possible fires. It typically defines the ignition and fire growth process, the fully developed stage, decay stage together with the building environment and systems that will impact on the course of the fire (EN1991-1-2)

the choice of the design fire scenarios is carried out by <u>Fire Risk Assessment</u>, that takes into account the probability and <u>consequence</u> of the fire scenario

$R = P \times C$

The Fire Risk Assessment is performed through the *Event Tree approach*, according to ISO-16732 Guidelines

Selection of Design Fire Scenarios through Fire Risk Assessment

Fire Risk Assessment procedure

- 1. identification of a comprehensive set of possible fire scenarios;
- 2. estimation of probability of occurrence of each fire scenario;
- 3. estimation of the consequence of each fire scenario;
- 4. estimation of the risk of each fire scenario (combination of the probability of a fire and a quantified measure of its consequence);
- 5. ranking of the fire scenarios according to their risk.

Event tree

time-sequence path from the initiating condition through a succession of intervening events to an end-event.

Technical references

- ISO/TS 16732: "Fire safety engineering Guidance on fire risk assessment". Draft 2010.
- ISO/DS 16733: "Fire safety engineering Selection of design fire scenarios and design fires". 2005.

<u>Probability of occurrence of each event and consequence value of each fire scenario are</u> <u>obtained both by direct estimation from available data and engineering judgment.</u>

Selection of Design Fire Scenarios: Probability of occurrence

1st Event : first aid suppression

Available statistic data show that the probability of detecting fire manually and automatically is 69%. By considering that in 4% of cases, there's no manual or automatic detection system, this probability reaches 72%.

By considering a probability of success equal to 87%,

p(1st Event)=62%

2nd Event: smoke detector effectiveness

Smoke detectors reliability decreases during time, if maintenance operations aren't provided. In the examined case, by considering that system works for a year, and one maintainance operation is provided for each year, it can be assumed p(2nd Event)=70%

3th -4th Event: sprinkler activation and effectiveness

Statistic analyses, carried out in USA (with reference to time period 2003-2007), show that, during fire event in building with office use, sprinkler activates in 96% of cases, and the system is effectiveness in 99% of cases.

p(3th Event)=96% - p(4th Event)=99%

5th Event: barrier effectiveness

Available data show that barrier effectiveness, in building provided by sprinkler, is equal to 99,6%, while is equal to 92,8% in other cases.

p(5th Event)=99,6%

Selection of Design Fire Scenarios: definition of consequences

Numerical index of consequence									
Scenario	1 st event	2 nd event	3 th event	4 th event	5 th event	Damage (%)	Decription		
SS1	YES					0%	Damage is limited to thing involved in fire		
SS2	NO	YES	YES	YES		0.08%	Damage is limited to ¹ / ₂ room		
SS3a	NO	YES	YES	YES	YES	0.3%	Damage is limited to 2 rooms		
SS3b	NO	YES	YES	NO	NO	0.3%	Damage is limited to 2 rooms		
SS4a	NO	YES	NO	NO	YES	2.5%	Damage is limited to the compartment (15 rooms)		
SS4b	NO	YES	NO	NO	NO	5.0%	Damage is limited to the entire floor (30 rooms)		
SS5	NO	NO	YES	YES		0.3%	Damage is limited to 2 rooms		
SS6a	NO	NO	YES	NO	YES	2.5%	Damage is limited to the compartment (15 rooms)		
SS6b	NO	NO	YES	NO	NO	5.0%	Damage is limited to the entire floor (30 rooms)		
SS7a	NO	NO	NO	NO	YES	50.0%	Collapse of a part of building		
SS7b	NO	NO	NO	NO	NO	100.0%	Collapse of entire building		

Case Study: Design Fire Scenarios definition

Fire Safety Performance Levels

Fire Safety Goals

The main objective of fire safety checks concerns the mechanical resistance and stability, in fire situation, of the tower.

Choice of the fire model

The post-flashover fire is obtained through different model:

Case Study: Fire Scenario SS7a - One zone model

Table E.4 — Fire load densities q_{LR} [MJ/m²] for different occupancies

Occupancy	Average	80% Fractile					
Dwelling	780	948					
Hospital (room)	230	280					
Hotel (room)	310	377					
Library	1 500	1 824					
Office	420	511					
Classroom of a school	285	347					
Shopping centre	600	730					
Theatre (cinema)	300	365					
Transport (public space)	100 122						
NOTE Gumbel distribution is assumed for the 80 % fractile.							

Case Study: Fire Scenario SS7a - One zone model

Case Study: Fire Scenario SS5

Case Study: Fire Scenario SS7a - One zone model

Case Study: Fire Scenario SS5

Fire model: EN1991-1-2 Approach

Table E.5 — Fire growth rate and RHR ₁ for different occupancies				Table E.2 — Factors δ_{ni}										
Max Rate of heat release RHR				δ_{nl} Function of Active Fire Fighting Measures										
Occupancy	Fire growth rate	t. [\$]	RHR _t [kW/m ²]	Automatic Fire	Suppression	Au	tomatic I	Fire Detection			Manua	I Fire Sup	pression	
Dwelling	Medium	300	250	Automatic	Independent	Autor	atic fire	Automatic	Work	<u>د</u> ا	Off Site	Safe	Fire	Smoke
Hospital (room)	Medium	300	250	Water Extinguishing System	Water	Detection & Alarm		Alarm	Fire Brigade		Fire Brigade	Access Routes	Fighting Devices	Exhaust System
Hotel (room)	Medium	300	250		Supplies			Transmission						
Library	Fast	150	500	oyatem		by	by	Fire Brigade						
Office	Medium	300	250	8.1	8.0	See	Since	8.0	8	.	8	8.0	Sec	Sec
Classroom of a school	Medium	300	250	011	On2	On3	On4	Ons	One	'	On/	Ons	Ong	0010
Shopping centre	Fast	150	250	0.61	1.0 0.87 0.7	0.87	or 0.73	0.87	0.61	or	0.78	0,9 or 1	1.0 or 1.5	1.0 or 1.5
Theatre (cinema)	Fast	150	500	0,01	the lates late	4,61	01 0,10	0,01	4,41	~		or 1,5	de er de	the er the
Transport (public space)	Slow	600	250	7 -			- 10	_						

Table E.4 — Fire load densities q_{tx} [MJ/m²] for different occupancies

Occupancy	Average	80% Fractile					
Dwelling	780	948					
Hospital (room)	230	280					
Hotel (room)	310	377					
Library	1 500	1 824					
Office	420	511					
Classroom of a school	285	347					
Shopping centre	600	730					
Theatre (cinema)	300	365					
Transport (public space)	100 122						
NOTE Gumbel distribution is assumed for the 80 % fractile.							

Fire model: EN1991-1-2 Approach

Comparison between Scenario SS7a and EN1991-1-2 Approach

Summary and Conclusions

- Fire Safety Engineering, in accordance with Italian and European standard, allows the definition of safety goals and different performance levels, associated to defined design fire scenarios.
- The identification of design fire scenarios is carried out by means of Fire Risk Assessment, applying the event tree approach and the risk ranking evaluation according to ISO-16732 Guidelines: it has been shown that different design fire scenarios may be related to different fire performance levels (e.g. resistance of structures for highest risk fire scenario and limited damage for the most probable fire scenario).
- The choice of design fire scenarios determines the identification of key events that characterise the fire and differentiate it from other possible fires.
- Traditional Eurocode approach concerns the mechanical resistance and stability of structures, with reference to a single fire event, in which the effective value of fire load is modified in a semi-probabilistic way by means of partial safety factors, in order to take into account the events that can affect fire development.
- A comparison between the two approaches has been proposed.

- NIGRO E., A. FERRARO, G. CEFARELLI (2010). Application of FSE approach to the structural fire safety assessment of steel-concrete composite structures. In: Urban habitat construction under catastrophic events. Napoli, 16-18 settembre 2010, CRC Press, p. 255-260, ISBN/ISSN: 9780415606851
- NIGRO E., A. FERRARO, G. CEFARELLI (2010). *Member, substructure and global structural fire analyses* of steel-concrete composite frames. In: Urban habitat construction under catastrophic events. Napoli, 16-18 settembre 2010, CRC Press, p. 261-269, ISBN/ISSN: 9780415606851
- E. NIGRO, A. FERRARO, G. CEFARELLI. The influence of fire scenarios on the structural behaviour of composite steel-concrete buildings. APPLIED MECHANICS AND MATERIALS, Vol. 82 (2011), p. 368-373. ISSN: 1662-7482. ISBN-13 978-3-03785-217-0. doi:10.4028/www.scientific.net/AMM.82.368.
- Emidio NIGRO, Giuseppe CEFARELLI, Antonio BILOTTA, Gaetano MANFREDI, Edoardo COSENZA. Fire resistance of concrete slabs reinforced with FRP bars. Part I: Experimental investigations on the mechanical behavior. COMPOSITES: PART B-ENGINEERING, Vol. 42 (2011), p. 1739–1750. Elsevier. ISSN: 1359-8368. doi:10.1016/j.compositesb.2011.02.025.
- Emidio NIGRO, Giuseppe CEFARELLI, Antonio BILOTTA, Gaetano MANFREDI, Edoardo COSENZA. Fire resistance of concrete slabs reinforced with FRP bars. Part II: Experimental results and numerical simulations on the thermal field. COMPOSITES: PART B-ENGINEERING, Vol. 42 (2011), p. 1751–1763. Elsevier. ISSN: 1359-8368. doi:10.1016/j.compositesb.2011.02.026.
- E. NIGRO, G. CEFARELLI, A. BILOTTA, G. MANFREDI, E. COSENZA.. Behavior of FRP Reinforced Concrete Slabs in Case of Fire: Theoretical Models and Experimental Tests. ADVANCES IN STRUCTURAL ENGINEERING – A Multi-Science Publication. Vol. 15, N. 4, April, 2012, p. 637-652. ISSN: 1369-4332. doi: 10.1260/1369-4332.15.4.637.
- E. NIGRO, A. BILOTTA, G. CEFARELLI, G. MANFREDI, E. COSENZA. Performance under Fire Situations of Concrete Members Reinforced with FRP Rods: Bond Models and Design Nomograms. JOURNAL OF COMPOSITES FOR CONSTRUCTION - ASCE. Vol. 16, N. 4, August 1, 2012, pp. 395-406. ISSN: 1090-0268. doi: 10.1061/(ASCE)CC.1943-5614.0000279.

List of Reference (2/2)

- E. NIGRO, G. CEFARELLI, A. FERRARO, G. MANFREDI, E. COSENZA. Fire Safety Engineering for open and closed car parks: C.A.S.E Project for L'Aquila. APPLIED MECHANICS AND MATERIALS, Vol. 82 (2011), p. 746-751. ISSN: 1662-7482. ISBN-13 978-3-03785-217-0. doi:10.4028/www.scientific.net/AMM.82.746.
- E. NIGRO, G. CEFARELLI, A. FERRARO, G. MANFREDI, E. COSENZA. Application of Structural Fire Engineering to Open and Closed Car Parks of C.A.S.E. Project for L'Aquila. COST Action TU0904 – Integrated Fire Engineering and Response: Case Studies. p. 237-251. Editors: F. Wald, I. Burgess, G. Rein, L. Kwasniewski, P. Vila Real, K. Horova. CTU Publishing Production, Czech Technical University in Prague, March 2012. ISBN: 978-80-01-05004-0.
- E. NIGRO, G. CEFARELLI, A. FERRARO, I. DEL PRETE, D. SANNINO, G. MANFREDI. Application of Structural Fire Engineering to an Italian Tall Office Building. 7th International Conference on Structures in Fire (SIF'2012), Zurich, Switzerland, June 6-8, 2012, p. 13-22. Editors: M Fontana, A. Frangi, M. Knobloch. Printed and bound by ETH Zurich. DOI: 10.3929/eth-a-0070501097.Fire Safety Engineering, in accordance with Italian and European standard, allows the definition of safety goals and different performance levels, associated to defined design fire scenarios.

