Numerical study of composite column subframe assembly in fire

Naveed Iqbal Fire Engineering research: key issues for the future Malta, 2012-04-14

Outline

- Introduction
- Aim of the Research
- Description of the finite element model
- Results

Introduction

• COMPFIRE

 "The objective of the project is to develop a comprehensive component based design methodology for composite joints in fire, particularly joints between steel beams and composite columns such as concrete filled tubes and partially encased open sections"

Introduction

- Fire testing has been carried out at different levels of structural details such as:
 - Composite joint components
 - Isolated composite joints
 - Composite structural sub assemblies
 - Demonstration structures

Aim of the Research

- This research is part of the COMPFIRE project as the work package which deals with finite element modeling of subframe assemblies
- Objectives
 - Results from the furnace tests on subframe assemblies are used to validate the numerical models and to demonstrate the robustness of composite structures in fire by improved joint detailing
 - These models will then be used to carry further parametric studies to determine the interaction between composite joints and structural members

Aim of the Research

- Objectives...
 - Improvement of the composite joint detailing robustness
 - Developing a methodology for realistic prediction of the progressive degradation of a composite structure under fire

Test Setup

Test Program

Table 2: Distribution of experimental tests

Test nº	Temperature	Column section	Reverse channel joint	Reason
1	Ambient	CHS 244.5x10	C1	Reference test at 20°C
2	Ambient	SHS 250x10	S1	Reference test at 20°C
3	Ambient	SHS 250x10	S2	Reference test at 20°C
4	Natural fire 1 + cooling	SHS 250x10	S1	Joint behaviour under natural fire 1
5	Natural fire 2 + cooling	SHS 250x10	S1	Joint behaviour under natural fire 2
6	Natural fire 2 + cooling	SHS 250x10	S2	Joint behaviour under natural fire 2
7	Natural fire 2 + cooling	SHS 250x10	S3	Joint behaviour under natural fire 2

OF TECHNOLOGY

Test Program

.

Table 3: Reverse channel joints							
Test	Column	Reverse	Reverse channel				
n°	section	channel joint	section				
1	CHS 244.5x10	C1	U 200x135x8				
2	SHS 250x10	S1	U 200x90x8				
3	SHS 250x10	S2	U 200x90x10				
4	SHS 250x10	S2	U 200x90x10				
5	SHS 250x10	S1	U 200x90x8				
6	SHS 250x10	S2	U 200x90x10				
7	SHS 250x10	S3	U 200x90x12				

Finite element model

9

NIVERSIT

OF TECHNOLOGY

• Utilizing the symmetry of the model

Finite element model

- Solid C3D8 elements for the steel beam connection components and part of the column
- Beam elements for Part of the columns away from the connection
- Temperature dependent non-linear material properties both for steel and concrete
- Surface to surface contact with friction coefficent 0.25 in tangential direction and 'hard contact' in the normal direction
- Tie constraint used at all welds
- Constant temperature applied

Finite Element model

General procedure:

- Initial step
 - Ambient temperature (20 °C) application (predefined field)
- First step
 - Small pre-tensioning of bolts
 - Initialise contact
- Second step
 - Applying the loading
- Third step
 - Applying temperature as a predefined field

Tasks to perform

- Validate the model using experimental data
- Perform parametric studies
- Improve understanding of the interaction between composite joint and the surrounding structure

Thank you for your attention!

ECHNOLOGY