Component behaviour of reverse channel connections Ambient and elevated temperatures

Tim Heistermann Malta, 2012-04-14

COST Action TU0904

Outline

- Introduction
- Finite Element modelling
 - Reverse channel joints
 - Reverse channel sections
- Results
- Parametric study
- Outlook

- "COMPFIRE Design of composite joints for improved fire robustness" (RFCS)
- Objective
 - Development of a comprehensive component-based design methodology for composite joints against fire

- Work package on "Component behaviour"
- Main objectives
 - Provide additional experimental data
 - Characterize behaviour of composite joint components
 - Develop simple temperature dependent models to predict temperature-force-deflection behaviour

- Reverse channel connections
 - Possibility to develop catenary action
 - Deformation of web channel
 - ➢ high ductility

• Constant temperature tests of isolated joints

© The University of Sheffield

• Reverse channel joints

Interactions:

- surface-to-surface contact between:
 - reverse channel and endplate
 - bolts and endplate/reverse channel
- tie constrain between:
 - endplates and beam
 - column and reverse channel

General procedure:

- Initial step
 - Ambient temperature (20 °C) application (predefined field)
- First step
 - Small pre-tensioning of bolts
 - Initialise contact
- Second step
 - Applying temperature (predefined field)
- Third step
 - Applying mechanical load through loading device

Loading mechanism

OF TECHNOLOGY

10

ECHNOLOG

• Reverse channel sections

Compressive tests

test FEA

• Reverse channel joints

550 °C, failure mode: bolt rupture

• Reverse channel joints

OF TECHNOLOGY

12

• Reverse channel joints

550 °C, failure mode: fracture of reverse channel web

• Reverse channel sections – tensile tests

20 °C, failure mode: excessive yielding around hole

Reverse channel sections – compression tests

20 °C, failure mode: shear of web channel

Parametric study

170 simulations (compression/tension)

- Bolt row effect
- Bolt spacing
- Endplate thickness effect
- Reverse channel thickness
- Use of UKPFC profiles vs. channels cut from tube
- Temperature

Outlook

- Simplified models
 - Based on plastic theory of structures
 - Reverse channel as portal frame

© The University of Sheffield

Acknowledgements

COMPFIRE - RFSR-CT-2009-00021

Investing in your future

EUROPEAN UNION European Regional Development Fund NSS – Nordic Safety and Security

OF TECHNOLOGY

Thank you for your attention!

ECHNOLOGY