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What are.post-tensioned buildings?

Conventional steel rebar Prestressing (PS) steel

e Advantages of post-tensioning concrete with PS steel for load

balancing
- Thin floors (high ceilings) ~ .
- Increased span lengths u Highly
- Reduces building materials ) Optimized

Rapid construction
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Typical post-tensioned buildings
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Novel building optimization

e Current guidance is dated and has not
kept up with modern optimization trends

“ Today’s flat-slab post-tensioned buildings, for
example, with columns spaced (12 m) on center
and span-depth ratios of 40 are more complex
and require more engineering attention than
typical flat-slab buildings of 40 years ago, with
columns spaced at (6 m) on center and span-
depth ratios of 20. ” -Randall Poston (chair ACI
318)



Real PT slab behaviour in fire is debatable

e PT optimization increases
susceptibility to fire:

- PS steel more sensitive to strength loss in high
temperature

- Spalling of concrete cover (HS concrete,
precompression of slab)

- Unbonded tendons run continuous, local damage WILL
effect the entire floor (Key Biscayne demolition)

e Code guidance is based on (often

dated) standard furnace tests of simple
m Slabs: PTStandgLr:kj;lsrj Zeos(; 8()Kelly and

= modern construction?, building materials?, real fires?




The PhD

e Phase 1 Fire code assessment for
unbonded PS steel rupture (spalling,
and variable heating length)

e Phase 2 High temperature

Creep strain (ecr)

mechanical behaviour of modern ~
PS steel (softening, strength and / SeonsnCroe =2
creep) K T

e Phase 3 three large-scale
continuous PT slab tests under
localised heating

e Side projects while | wait for Phase 3
to begin (curing time delayed)



Phase 1: Localized fire damage to unbonded

PS steel

e 2009 Tests demonstrated unbonded PS steel rupture is more
probable under localized heating - influenced by creep

Localized fires may be due to spalling, travelling, ceiling jets...
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Phase 1: Localized fire damage to unbonded

PS steel

e IBC, and EC2 analyzed with simple tendon rupture
modelling with creep (time, temp, load dependent)
relation and heat transfer ( ASTM E119 curve)
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Phase 1 results
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Phase 2: Modern PS steel behaviour in high
temperature

Used Digital Image Correlation (DIC) in uniaxial tensile tests to
measure deformation and cross section reduction
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Phase 2: Modern PS steel behaviour in high

temperature
e DIC patch correlations based on HT paint speckle pattern
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Phase 2: Modern PS steel behaviour in high

temperature
e DIC to bonded foil strain gauges and extensometer

e DIC cross section to Poisson constant volume theory
e DIC to theoretical thermal expansion calculation (EC2)
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Phase 2: Modern PS steel behaviour in high

temperature
e Creep behaviour using temperature compensated time.
e PS steel types considered; ASTM 421-1970, ASTM 416-

2008, and BS 5896-2011 (all of different composition, but
considered structurally equivalent)
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Phase 2 results

e Uniaxial creep tests at Steady state and Transient
investigating equivalency

Creep strain,&r
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» Results appeared similar
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identical magnitudes; at
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» Change in transient test
heating rate had same
magnitudes




Phase 2 results

Tertiary creep as manifestation of localized yielding
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Phase 2 results

e Strength tests with true stress in steady state; Implicit
creep strength tests comparison underway (post peak

softening).
-~ 100°C (e > Reduction ratios matched well
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| > Loading rate decrease,
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Phase 2 results

e Creep models were compared with the results of the
locally heated strong back tests (varied transient and
steady state heating with cooling)
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Phase 3: Continuous post-tensioned

concrete slabs under localized fire
e Two UPT and One BPT, 1-hour rated EC2 slabs

Lift hook 1 Lie= hook = LIE< hook 3 Lif+ hook 4

heatlhg
source

Tests planned for this summer (6+ months, low MC%)

A\

Restram/ng forces measured from steel columns (stiffness based on
representative concrete columns

Applied loading

Realistic span to depth ratio (>40)

Bonded steel provided

Thermocouples (x24), Linear Potentiometers (x8), Load cells (x2)
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Radiant panel heating (/ocally heated)
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Phase 3: Continuous post-tensioned

concrete slabs under localized fire
Issues and problems with Phase 3:
e What do we want to do with the results.....
- Apriori and Aposteriori round robin modelling ?
- In house modelling (FEM packages)?

e Instrumentation
- What should we be measuring and what does it mean?

- Motion imaging? (2D DIC, 3D tracking?)
e Pretesting

- Ambient tests before heating?
e Intangibles; prestressing the slabs?
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Current collaborative side projects

e Project 1: The History of Fire Safety
Engineering (The full story is not recorded)

» Traditional and non traditional construction

» Large scale testing (Modern and antiquated)
ICEM15 conference this July in Porto |

> Fire behaviour, dynamics and design philosophy

e Project 2: Axis distance vs. clear cover of
miniature PS slabs exposed to ISO 834. Should EPRERERE |
this design rule change? kil

e Project 3: Open access repositories for
historical fire engineering photographs and
articles
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Thank you

NSERC roradditional information
CRSNG

Email: j.gales@ed.ac.uk

Further reading:

ehttp://www.engq.ed.ac.uk/fire/2009-phd-john.html

eResults of Phase 1 can be consulted in the Journal of Structural Fire Engineering and
Fire Safety Journal (see web link for references)
eSome preliminary results of Phase 2 will be presented at SIF 2012 conference in Zurich

*Phase 3 is currently in progress targeting 2013 for completion.
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