

FIRE RESISTANCE OF GALVANISED MEMBERS

Jiří Jirků

Contents of the presentation

- Motivation
- Heat transfer in fire technology
- Fire tests
- Further Research

Motivation

Motivation

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

- Surfacing of the Steel Structures is not accounted in the calculation of Fire Resistance
- Advantages of Galvanazing compared to Intumescent Coating
 - Price availability
 - Reduction of labour consumption
 - Acceleration of construction
 - Aesthetic properties
 - New possibility of using zinc coated members

Motivation

Heat Transfer in Fire Technology

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Further research

Fourier's Law $\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) = c\rho \frac{\partial T}{\partial t}$

Conduction – molecular process of heat transfer

Heat flux to boundary depends on surrounding and surface temperature: $\dot{q}_{tot}^{"} = \dot{q}_{rad}^{"} + \dot{q}_{con}^{"}$

Radiation - heat flux of electromagnetic waves

$$\dot{q}_{rad}^{"} = \varepsilon \sigma (T_r^4 - T_s^4)$$

Convection – fluid passing by the surface

$$\dot{q}_{con}^{"}=h_c(T_g-T_s)$$

Motivation

Fire Test 2010

Heat transfer in fire technology

• Pavus a.s., Veselí nad Lužnicí, 20. 10. 2010

Fire test 2010

Horizontal Furnace with System of Oil-burners

Standard Fire Curve

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Fire Test 2010

Heat transfer in fire technology

Specimens:

Fire test 2010

- Hollow Cross Sections TR 114,3 x 4 1000 mm
- Opened Cross Sections IPE 200 1000 mm

Fire test 2011 – Real structure

Galvanized Surface:

Fire test 2011 - Furnace

Average Thickness 119 μm

- Temperature of Galvanizing 460°C
- 1 Specimen Admixure Al in Galvanizing Bath

Motivation

Fire Test 2010

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Fire Test 2010

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Further research

• Specimens after Fire Test

Motivation

Fire Test 2010

Heat transfer in fire technology

Surfacing after fire test

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Fire Test 2010

Heat transfer in fire technology

Measured Values

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Results - Analytical Approach

Heat transfer in fire technology

Heat Transfer – "black" specimen:

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

$$h_{net} = h_{net,c} + h_{net,r}$$

$$\Delta\Theta_{a}(t) = k_{sh} \cdot \frac{A_{m}}{c_{a}(t) \cdot \rho_{a}} h_{net}(t) \Delta t$$

$$h_{net,c}(t) = \alpha_{c} \cdot \Theta_{g}(t) - \Theta_{a}(t)$$

$$h_{net,r}(t) = \phi \cdot \varepsilon_{m} \cdot \varepsilon_{f} \cdot \sigma \cdot |(\Theta_{g}(t) + 273)^{4} - (\Theta_{a} + 273)^{4}|$$

Motivation

Results - Analytical Approach

Heat transfer in fire technology

Heat Transfer – galvanised specimen:

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Results - Analytical Approach

Heat transfer in fire technology

Surface Emissivity

Fire test 2010

• Aluminum

 $\varepsilon_{\rm m}$ = 0,3

Fire test 2011 – Real structure

Galvanized Steel

Stainless Steel

 $\varepsilon_{\rm m}$ = 0,32

Steel without surfacing

$$\varepsilon_{\rm m}$$
 = 0,4

Fire test 2011 - Furnace

 $\varepsilon_{\rm m}$ = 0,7

Motivation

Results - Analytical Approach

Heat transfer in fire technology

$$\varepsilon_{\rm m}$$
 = 0,32

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Fire Test 2011 – Real structure

Heat transfer in fire technology

Pavus a.s., Veselí nad Lužnicí, 15. 09. 2011

Full scale test on real structure, dimensions 10,4 x 13,4 m

 $q_{fi,d} = 525 \text{ MJ/m}^2$, opening 5 x 2 m

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Further research

Fire Test 2011 - Real structure

Motivation

Fire Test 2011 – Real structure

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Fire Test 2011 - Furnace

Pavus a.s., Veselí nad Lužnicí, 11. 10. 2011

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Fire Test 2011 - Furnace

Heat transfer in fire technology

Fire test 2010

Fire test 2011 – Real structure

Fire test 2011 - Furnace

Motivation

Further research

Heat transfer in fire technology

- Aging of zinc coated members
- Influence of thickness of zinc coating surfacing
- Composition of galvanizing bath
- Numerical model

Fire test 2010

Goal of the work

Fire test 2011 – Real structure

Specify emissivity of galvanised surface

Fire test 2011 - Furnace

Calibrated numerical model

 Shedule of temperatures for zinc coated steel members in standard temperature curve

Thank you for attention

URL: www.ocel-drevo.fsv.cvut.cz

Jiří Jirků

České vysoké učení technické v Praze

