COST IFER TU0904 Training School Malta, April 11-14, 2012

Robustness of steel composite open car parks under localised fire

Numerical evaluation of the effect of axial restraints

CÉCILE HAREMZA

Scientific Supervision of Prof. Dr. Aldina Santiago

INTRODUCTION

EUROPEAN RFCS ROBUSTFIRE PROJECT

- NEW DESIGN CRITERIA of car parks WITH SUFFICIENT ROBUSTNESS UNDER LOCALISED FIRE
- PRACTICAL DESIGN GUIDELINES

→ <u>Behaviour study</u> of the frame elements directly affected by the localised fire (Experimental tests and numerical models)

Robustness of steel composite open car parks under localised fire

Cécile Haremza 3

TESTED SUB-FRAME

From the open car park building

20

300

HEB

-900

0

85

isise Institute for Sustainability and Innovation in Structural Engineering

OVERVIEW OF THE 7 EXPERIMENTAL TESTS ON JOINTS

• OBJECTIVE

To observe the COMBINED BENDING MOMENT and AXIAL LOADS

in the heated joint after the loss of the column due to a localised fire

□ <u>7 EXPERIMENTAL TESTS</u>

- **<u>1 REFERENCE TEST</u>** at ambient temperature
- <u>5 TESTS</u> at elevated temperatures (500°C and 700°C)
- **<u>1 DEMONSTRATION TEST</u>** under fire (increase of temp. up to the failure of the joint)

□ INFLUENCE OF THE LATERAL RESTRAINTS

5

MECHANICAL AND THERMAL LOADINGS OF TESTS 1 to 6

□ <u>3 LOADING STEPS</u>

- 1: INITIAL HOGGING BENDING MOMENT IN THE JOINT
 → as in the real car park building
- 2: LOCALISED FIRE

→ heating of the joint zone up to reach 500°C or 700°C in beams bottom flanges

• 3: LOSS OF THE COLUMN AND INCREASE OF THE

SAGGING BENDING MOMENT

 \rightarrow increasing the vertical load at the column top up to the failure of the joint (constant temperature)

TESTING ARRANGEMENT

ISISE Institute for Sustainability and Innovation in Structural Engineering

STEP 2: Localised Fire

Tests at high temperatures – Ceramic pad heating elements

MECHANICAL RESULTS AND FAILURE MODES

CONCRETE CRUSHING IN COMPRESSION

SOME BOLTS FAILURES IN TENSION (BOTTOM ROW)

isise Institute for Sustainability and Innovation in Structural Engineering

MECHANICAL RESULTS AND FAILURE MODES

Deformation of the steel end-plate (centre and bottom part)

- Because of the JOINT CONFIGURATION (260 mm, end-plate (15 mm) thinner than column flange (19 mm), and an initial gap (0.6 mm));
- Because of the SAGGING BENDING (tensile loads at the bottom part)

TEST 6: 700°C/SPRING RESTRAINT

TEMPERATURES RESULTS

□ <u>TEST 6 (700°C)</u>

MECHANICAL RESULTS AND FAILURE MODES

MOMENT/ROTATION and MOMENT/AXIAL LOAD

- Joint rotation + ductility increased by temperature and compression axial loads
- Maximum sagging bending moment decreased by temp. / increased by axial loads

Cécile Haremza | 12

NUMERICAL MODELS

□ <u>ABAQUS</u>

□ <u>OBJECTIVES</u>

- Calibration of two/three models under 20°C (test 1) and 700°C (test 5), also with spring restraint (test 6)
- Study of the influence of the axial restraint to beam;
- Study of the joint behaviour under catenary actions
 - \rightarrow More realistic situation, with beam span of 10 m

isise Institute for Sustainability and Innovation in Structural Engineering

NUMERICAL MODEL (TEST 1 – 20°C)

STEEL MECHANICAL PROPERTIES (IPE550, HEB300, End-plate)

- Tensile coupon tests (20°C, 500°C and 700°C)
- Standardized curves defined using the Menegotto-Pinto model (for materials of sharp-knee type)

• To be converted to the true stress-strain measures ($\sigma_{tru}, \varepsilon_{tru}$)

NUMERICAL MODEL (TEST 1 – 20°C)

PROPERTIES OF M30 GRADE 10.9 BOLTS

- Tensile coupon tests (20°C, 200°C, 400°C, 500°C, 600°C, 700°C and 800°C)
- At 20°C: idealized by a **bi-linear curve**: yield strength = 932 MPa (ε_{nom} = 0.45 %) and ultimate strength = 1044 MPa (ε_{nom} = 5 %)

• fracture energy G_F (93.4 N/m) (energy required to propagate a tensile crack of

isise Institute for Sustainability and Innovation in Structural Engineering

NUMERICAL MODEL (TEST 1 – 20°C)

GENERAL MODELLING ASSUMPTIONS

- **Symmetry** of the joint (no local buckling of webs)
- Boundary conditions
- C3D8R **solid elements** (B31 for upper part of the column)
- Concrete slab: TIE to the steel beam
- Contact interactions (surface to surface/small sliding)
- Initial deformation of end-plate (0.6 mm)
- General static analysis
 - Step 1: bolts pre-loading (adjusting length)
 - Step 2: self-weight
 - Step 3: hogging bending moment
 - Step 4: sagging bending moment

isise Institute for Sustainability and Innovation in Structural Engineering

□ STEEL AND COMPOSITE MODELS

isise Institute for Sustainability and Innovation in Structural Engineering

NUMERICAL RESULTS (TEST 1 – 20°C)

□ <u>STEEL MODEL</u>

- Plastic deformations of the end-plate evidenced in the tensile zone
- **Ultimate stress-strain** is reached in the bottom bolt (row 4)
- Similar bolt failure test/model

NUMERICAL RESULTS (TEST 1 – 20°C)

<u>COMPOSITE MODEL</u>

- Num. model stopped before reaching ultimate stress-strain in bolt
- At this point (13 mrad rotation): concrete not yet crushed

FUTURE DEVELOPMENTS

□ <u>TO SOLVE THE COMPOSITE BEHAVIOUR PROBLEM</u>

- Modelling the **shear connectors** (springs or solid elements?)
- Real shape of the composite slab?

□ <u>THE TEMPERATURES</u>

- **Directly applied** using predefined temperatures
- Expansion coefficient and material properties degradation

□ THE AXIAL RESTRAINT TO THE BEAM

□ THE REAL BEAM LENGTH DIMENSION

Institute for Sustainability and Innovation in Structural Engineering

Thank you for your attention!

