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• Sensitivity of steel temperatures to fire protection material properties

• Current assessment method for fire protection materials

• A theoretical model for thermal conductivity of porous material

• Thermal conductivity of pores at high temperatures

• Thermal conductivity models for a few common fire protection materials

Intumescent coatings

• Variability of “effective” thermal conductivity of intumescent coatings

• Modelling expansion of intumescent coatings

• Some recent research results

• Further research on intumescent coatings
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Protected Steel Temperature: 
EN 1993-1-2
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Sensitivity of steel temperature 
to thermal properties of fire 
protection materials – rock fibre
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Sensitivity of steel temperature to 
thermal properties of fire 
protection materials – vermiculite
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Thermal conductivity of fire 
protection materials: EN 
13381-4 assessment method
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A theoretical model for thermal 
conductivity of porous materials
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A Model of Thermal Conductivity 
of Porous Materials
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“Effective” thermal conductivity 
of hot air

G=2/3 for spherical pore, d=diameter

G=1 for slits perpendicular to heat transfer direction
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Gypsum Plaster
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Approximately, if ε≈1
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Some thermal conductivity models 
of common fire protection materials
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Validation: Effects of 
density: Vermiculite
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Comparison of thermal conductivity 
values: Calcium Silicate 
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Gypsum Plaster
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Conclusions

• Important to have reliable data of thermal conductivity.

• The effects of high temperature on thermal conductivity should be 
included.

• EN 13381-4 method gives thermal conductivity – temperature relationship, 
but information confidential to manufacturers . Also results lack 
fundamental insight and based on gross assumption-treating entire fire 
protection as one layer with average temperature.

• Thermal conductivity of porous materials can be theoretically analysed.

• High temperature radiation within pores should be included.

• High temperature thermal conductivity model proved accurate for a number 
of fire protection materials: rock fibre, mineral fibre, vermiculite, calcium 
silicate, gypsu, plaster.
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Intumescent coatings
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Introduction
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Thermal conductivity of fire 
protection materials: prEN 
13381-8 assessment method
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Inaccuracy of assessment 
method (prEN 13381-8)
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Effective thermal conductivity 
from standard fire test
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Predicted results for 
slow parametric fires
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Predicted results for 
fast parametric fires
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Expansion ratios
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Including the effects of 
expansion thickness for slow fire
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Including the effects of 
expansion thickness for fast fire
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3mm

3mm

Char Structure

50 kw   0.4 mm D.F.T

65 kw 1.2 mm D.F.T
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Modelling 
expansion

Based on ideal gas law:
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Retention of released 
gas of blowing agent
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Cone tests
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Comparison between 
theory and test results
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Comparison of final 
thickness
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Sensitivity: effects of 
Ctrap value
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Sensitivity: effects of 
bubble size
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Reference
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Further results from furnace testing 
(using exactly the same predictive 
model and properties as cone tests)
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Examples of 
comparison: ISO fire
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Fast Fire
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Overall temperature 
accuracy
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Overall thickness 
accuracy
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Conclusions

• Intumescent coatings are reactive materials. prEN 13381-8 not 
suitable for different fire conditions.

• Expansion process key to coating behaviour.

• A consistent set of material properties can be used for all 
different fire conditions, including cone calorimeter tests under 
different levels of heat flux, and furnace fire with different 
temperature-time relationships.

• Model can predict expansion process and final expansion 
thickness within 20%, steel temperature-time relationships with 
10%.
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Further research: microscopic 
modelling of expansion 
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Further research: 
effects of weathering
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Further research: 
stickability
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Overall summary

• Properties of fire protection materials are vital information to performance-
based fire engineering of structures.

• A relatively neglected area to other aspects of structural fire engineering.

• Some progresses have been made recently. But much more research is 
required.

• Technical challenges are as deep as the most challenging of predicting 
structural performance in fire.
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