Overview of the development of fire engineering in research and practice

Jean-Marc Franssen jm.franssen@ulg.ac.be

Various methods for determining the fire resistance.

- 1. Experimental Tests
- 2. Tabulated data
- 3. Simple calculation models
- 4. Advanced calculation models

▶Testing specimens for material behaviour

- >Testing material behaviour
- >Standard fire tests.
 - Circumstancial disadvantages: cost, delays, limited # of facilities.
 - Real disadvantages: only elements, size of the element, boundary conditions, variability.

- >Testing material behaviour
- >Standard fire tests
- **▶**Small scale fire tests

Steel: OK
Hydral materials: ???

12 2000 2000 c

Picture from Nakamura et al., 1^{rst} IAFSS, Gaithersburg, 1985

- >Testing material behaviour
- >Standard fire tests
- >Small scale fire tests
- **►**Large scale fire tests

Rare - Local fires - Observations more than research

Façade 4

Façade 3

- **Experimental testing is used mainly in research.**
- **⇒**Experimental testing will remain forever.
 - Verification of basic hypotheses used in calculation models
 - •Integrity criteria in separating elements

Method 2: Tabulated data

Definition: presentation, in simple form, of results obtained by other methods.

Standard fire resistance	Minimum dimensions (mm)					
	Slab thickness h_s	Axis-distance <i>a</i>				
		One way	Two way			
			$l_y/l_x \le 1.5$	$1.5 < l_y/l_x \le 2$		
1	2	3	4	5		
REI 30	60	10*	10*	10*		
REI 60	80	20	10*	15*		
REI 90	100	30	15*	20		
REI 120	120	40	20	25		
REI 180	150	55	30	40		
REI 240	175	65	40	50		

 l_{y} and l_{x} are the spans of a two-way slab where l_{y} is the longer span.

For prestressed slabs the increase of axis distance should be noted.

The axis distance a in Column 4 and 5 for two way slabs relate to slabs supported on all four edges. Otherwise, they should be treated as one-way spanning slabs.

^{*} Normally the cover required at room temperature will control

Method 2: Tabulated data

· · · · · · · · · · · · · · · · · · ·							
Standard fire resistance	λ	Column width b_{min} / axis distance a					
		n = 0.15	n = 0.30	n = 0.50	n = 0.70		
R30	30	150/25*	150/25*	250/35:300/25*	500/40:550/25*		
	40	150/25*	150/30:200/25*	300/35:450/25*	550/30		
	50	150/25*	200/30:250/25*	400/40:500/25*	550/50:600/40		
	60	150/25*	200/35:300/25*	450/50:550/25*	(1)		
	70	150/25*	250/40:400/25*	500/40:600/30*	(1)		
	80	150/25*	300/40:500/25*	550/50:600/40*	(1)		
R 60	30	150/30:200/25*	200:40:450/25*	450/50:550/30	550/50:600/40		
	40	150/35:250/25*	250:40:500/25*	500/40:550/35	600/60		
	50	200/35:300/25*	300:45:550/25*	500/55:550:40	(1)		
	60	200/40:500/25*	400:40:600/30	550/50:600/45	(1)		
	70	200/40:550/25*	500:40:550/35	600/60	(1)		
	80	250/40:600/25*	500:40:600/35	(1)	(1)		
R 90	30	250/40:450/25*	300/50:500/25	500/55:600/40	600/80		
	40	200/50:500/25*	350/50:550/35	550/60:600/50	(1)		
	50	250/45:550/25*	500/45:550/40	600/60	(1)		
	60	250/50:550/30	500/50:550/45	600/80	(1)		
	70	300/50:550/35	550/50:600/45	(1)	(1)		
	80	350/50:600/35	550/60:600/50	(1)	(1)		

^{*} Normally the cover at room conditions will control (1) Requires a width greater than 600 mm.

Method 3 : Simple calculation models

Definition: Method based on global equilibrium conditions.

$$\frac{M_{\text{max}}}{8} \leq R_d$$

$$\frac{qL^2}{8} \leq W_{pl} f_y$$

Method 3 : Simple calculation models

- Extrapolations of similar methods used at room temperature
- Can be used « by hand »
- One method for each material/member type.
- Not well suited for complex structures.

=> Used for real projects.

At
$$20^{\circ}C$$
: $\frac{q_d L^2}{8} \leq W_{pl} f_y$

At high temperature:
$$\frac{q_{d,fi} L^2}{8} \le W_{pl} f_y(T)$$

Method 4: Advanced calculation models

Definition: Based on principles of structural mechanics or of heat transfer (local equations).

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + F_x = 0$$

$$\frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} + F_y = 0$$

$$\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + F_z = 0$$

$$\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + F_z = 0$$

$$\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + Q - c\rho \frac{\partial T}{\partial t} = 0$$

Method 4: Advanced calculation models

• Finite differences, finite elements, boundary elements.

• Require a computer (numerical calculation models).

- 1. 'My Ph.D.' software
 - One author (university)

- 1. 'My Ph.D.' software
 - One author (university)
 - Limited field of application

- 1. 'My Ph.D.' software
 - One author (university)
 - Limited field of application
 - Limited availability

1. 'My Ph.D.' software

- One author (university)
- Limited field of application
- Limited availability

Limited durability This is MY software!!!

- 1. 'My Ph.D.' software
- 2. Dedicated software (VULCAN, SAFIR,...)
 - From a group (University)

Method 4: Advanced calculation models

- 1. 'My Ph.D.' software
- 2. Dedicated software (VULCAN, SAFIR,...)
 - From a group (University)
 - Wider field of application

- 1. 'My Ph.D.' software
- 2. Dedicated software (VULCAN, SAFIR,...)
 - From a group (University)
 - Wider field of application
 - Become available now

- 1. 'My Ph.D.' software
- 2. Dedicated software (VULCAN, SAFIR,...)
- 3. Commercial software (ANSYS, ABAQUS,...)
 - Widely distributed, used and validated
 - Price !!!
 - Nice graphics

$$+++$$
 or $--$?

What can we model and what should we test?

Which material can we model?

A priori, all of them...

if we have the properties.

Which properties?

Properties of the material?

No. Properties of the model.

=> Know the limits of your model.

Window frame (courtesy: Permasteelisa)

What can we model and what should we test?

Which structure can we model?

A priori, none of them...

except if we made a test before on a similar structure.

examples

1) Composite floor on corrugated steel sheets

2) Composite steel concrete columns

3) Steel plate covered by a plaster board

Yesterday Uniform temperature

Linear gradient

Method 4: Advanced calculation models Today

Non uniform temperature

Yesterday ISO fire

Method 4 : Advanced calculation models Today Natural fires (with cooling phase)

Requires specific material models.

Compressive strength of concrete

Difference between hot and residual compressive strength From Li & Franssen, Journal of Structural Fire Engineering, 2(1), 2011, 29-44.

Collapse of an undergroud car park after the fire has been put 35down

Yesterday

Implicit transient creep

Method 4 : Advanced calculation models Today

Explicit transient creep

Single members or 2D frames

Method 4: Advanced calculation models Today

3D analyses

Yesterday Linear elements

Method 4: Advanced calculation models Today Shell elements

Short Cellular Steel beam Symmetry not used

Diamond 2004 for SAFIR

POINT LOADS PLOT DISPLACEMENT PLOT (x 1)

Displacement in the ultimate limit state

One type of F.E.

Method 4: Advanced calculation models Today

Several types of F.E.

One way bending in floors

Method 4 : Advanced calculation models Today

Tensile membrane action

Static analyses

$$\{\Delta F\} = [K]\{\Delta u\}$$

Method 4 : Advanced calculation models Today

Dynamic analyses

$${F} = [K]{u} + [C]{u} + [M]{u}$$

Lee's Frame Analysed with Shell F.E. in bending $dT/dt = 1^{\circ}C/s$

Other considerations

Failure mode may be more critical than time of collapse

The same, now in 3D, with heated purlins

3D frame (no amplification in the deformation)

When performing a S.i.F. analysis:

✓ make it simple,

✓ or not,

but not both.

Natural fire with cooling phase.

Criteria?

- ❖ Time of collapse (natural fire) > required time for evacuation
- ❖ Infinite resistance (until complete burn out)?
- ightharpoonup Time of collapse (natural fire) = R(ISO)?

Stupidity?

Or maybe not!

Representation of the fire?

Nominal fire curve?

OK for structural research in the heating phase

Post-flashover parametric fire curve?

OK for structural research with a cooling phase

Zone models?

Ok if the geometry is appropriate

Difficulty for the columns in multi zone models

Representation of the fire?

Local models (Hasemi)?

OK if the geometry is appropriate

Hasemi not applicable for columns

CFD

Not for post-flashover fires

OK when local fire, large compartment with complex geometry, big budget.

Which interactions to consider?

IN REALITY EVERYTHING IS COUPLED

Temperatures in the structure

Conditions in the compartment Structural behaviour

59

Structural fire engineering used in practice to:

- 1) Prove stability without any protection on steel
- 2) Reduce fire protection on steel
- 3) Prove fire resistance of existing concrete structure
- 4) Prove failure mode

Tomorrow?

- Very large models
- Connections
- Spalling of concrete

Method 4 : Advanced calculation models

Tomorrow?

• C.F.D. - F.E. interconnection

Method 4 : Advanced calculation models

Tomorrow

- Moisture movements (e.g. in wood)
- Mechanical properties of gypsum
- Shear strength of concrete

Thank you and Fly high!