2.8 Natural building materials by heat effect

Hajpál M., Hungary

Burnt adobe	Investigated stone types
<image/>	Sandstones Balatonrendes (V) – reddish, fine grain, ferruginous-clayey, Permian Ezüsthegy (E) – white, fine grain, kaolinitic, Oligocene Rezi (R) – greenish, medium grain, jarositic, Pannonian Cottaer (C) – greyish, fine grain, kaolinitic-illitic, Cretaceous Donzdorfer (Dd) – ochre, fine grain, ferrigenous clayey, Jurassic Maulbronner (M) – reddish grey, fine grain, clayey, Triassic Pfinztaler (Pf) – greyish red, medium grain, chlorite, Triassic Pliezhausener (Pli) – yellowish white, medium grain, dolomitc, Triassic Postaer (Po) – off-white, medium grain, siliceous, Cretaceous Rohrschacher (B) – grey, fine grain, calcareous, Miocene Molasse Limestones Tardos compact (T) – red, pelagic, microbioclastic wackestone, Jurassic Süttő travertine (F) – creamy, bioclastic wackestone to peloidal oncoidal packstone Sóskút oolitic (D) – coarse grain, Miocene Rhyolite tuff Egertihamér (Rt) – grey white, Miocene
3	4

- Test conditions, heating in oven 6 hours 6 temperature (150, 300, 450, 600, 750, 900°C)
- Makroscopical investigation
- Petrological analyses
 - Thin sections analyses with Polarising microscope
 - X-ray Powder Diffraktion (XRD)
 - Differential Thermal Analyses (DTA)
 - Scanning Electron Microscope (SEM)
- Petrophysical test
 - Mass properties (specific and bulk density, porosity, water adsorption)
 - Ultrasonic sound velocity, Duroskop
 - Uniaxial compressive strength test
 - Indirect tensile strength test
 - Colour measuring (CIELAB)

900°C

rhyolite 900°C

red - 22°C green - 900°C black - later

Glauconite in Cottaer sandstone (Thin section) 900°C

Mineralogical changes

Acknowledgements:

- a Ákos Török (Budapest University of Technology and Economics, Budapest, Hungary)
- 9 M. Gómez-Heras, M. Álvarez de Buergo & R. Fort (Instituto de Geología Económica (CSIC-UCM). Madrid, Spain)
- M.J. Varas (Universidad Complutense de Madrid, Madrid, Spain)
- Hungarian-Spanish intergovernmental grants (HU: E-39/04; E: HH2004-0036)
- Madrid Regional government's project MATERNAS
- Financial support of COST-STSM-C17-01744 (M. Gómez)
- Bolyai J. research grant BO/233/04 (Ákos Török)
- Postdoctoral fellowship OTKA D 45933 (Mónika Hajpál)

Thank you for your attention!

Dr. Mónika Hajpál

hajpal@gmail.com mhajpal@emi.hu

11

10