1.8 Selected aspects of safety evaluation for accidental fire situation on the example of a steel beam

Maslak M., Poland

• Constant values of partial safety factors,
$$\gamma_Q = 1,5$$
 and $\gamma_{M,fi} = 1,0$, give the solution
that the acceptable probability of downcrossing of the ultimate level $R_{fi,i,d}$ by the random
value $R_{fi,i}$ is significantly greater than the acceptable probability of upcrossing of the level
 $E_{fi,i,d}$ by the random value $E_{fi,i}$. Such quantitative differentiation between the adopted
internal safety requirements seems to be unjustified and unnecessary.
• A new, more accurate concept of the specification of partial safety factors, for action effect and
for member resistance – separately, is proposed by the author. It is based on the regula of the
split of global safety index β , given in the standard EN 1990 in which:
 $\alpha_E = 0,7$ and $\alpha_R = 0,8$
• As a result we obtain the minimum values: γ_Q , min = γ_Q , min (ν_Q) and
 $\gamma_{M,fi}$, min = $\gamma_{M,fi}$, min (ψ_R) for which the partial safety conditions are satisfied. They depend
on the variability of the load q as well as on the variability of member resistance $R_{fi,i}$
on the variability of the load q as well as on the variability of member resistance $R_{fi,i}$.
 $\gamma_{M,fi} = \frac{R_{fi,i,t,k}}{R_{fi,i,t,d}} = \frac{\bar{R}exp(-1,645\upsilon_R)}{\bar{R}exp(-0,8\beta\upsilon_R)} = \exp[(0.8\beta - 1,645)\upsilon_R]$

Conclusion:

• The value $\gamma_{M, fi} = 1.0$ suggested by the standard, is <u>too small</u> to secure the required safety level of the resistance. On the other hand, this drawback <u>is partly compensated</u> by the acceptance of constant value $\gamma_Q = 1,5$ <u>higher than necessary</u>. Furthermore, values of both partial safety factors, $\gamma_{M, fi}$ and γ_Q proposed to use in the case of fire, <u>should be dependent</u> <u>on suitable coefficients of variation</u>, v_R and v_Q in accordance with the relations shown in presented Figures.

Thank you for your attention.

9