

Lifelong Learning Programme LEONARDO DA VINCI

Fire Behaviour of Steel and Composite Floor Systems

Background of simple design method

Olivier VASSART - Bin ZHAO

Dec. 2010

Content of presentation

- Mechanical behaviour of composite floors in a fire situation
- Simple design method of reinforced concrete slabs at 20 °C
 - Floor slab model
 - Failure modes
- Simple design method of composite floors at elevated temperatures
 - Resistance of concrete slab with plastic yield lines
 - Membrane effect at elevated temperatures
 - Enhancement in presence of supporting steel beams

Background of simple design method

20°C

- Floor slab model
 - Membrane effect enhancing yield lines resistance

• Membrane forces along yield lines (1)

Mechanical behaviour of composite floors

Simple design method at 20°C

• Membrane forces along yield lines (2)

Mechanical behaviour of composite floors	k, b	are parameters defining magnitude of membrane forces,
Simple design	n	is a factor deduced from yield line theory,
method at 20°C Simple design method at elevated temperatures	K	is the ratio of the reinforcement in the shorter span to the reinforcement in the longer span,
	To	is the reinforcement per unit width in the longer span,
	T ₁ , T ₂ , C, S	are resulting membrane forces along yield lines.

Simple design method of reinforced concrete slabs at 20 °C

• Contribution of membrane action (1)

– Element 1

Mechanical behaviour of composite floors

Simple design method at 20°C

Simple design method of reinforced concrete slabs at 20 °C

- Contribution of membrane action (2)
 - Element 2

In-plane view of the resulting membrane forces

Side-view of the resulting membrane forces under a deflection equal to w

Mechanical behaviour of composite floors

Simple design method at 20°C

• Contribution of membrane action (3)

Enhancement factor for each element

 $e_{i, i=1,2} = \begin{cases} e_{im} : moment resistance of element i about the support + e_{ib} : moment resistance of element i yield lines$

- Overall enhancement

$$e = e_1 - \frac{e_1 - e_2}{1 + 2\mu a^2}$$

where:

- **µ** is the coefficient of orthotropy of the reinforcement
- **a** is the aspect ratio of the slab = L/ℓ

Mechanical behaviour of composite floors

Simple design method at 20°C

• Contribution of membrane action (4)

pattern

Mechanical behaviour of composite floors

Simple design method at 20°C

of slab and 'relieves' the strains the

reinforcement in the short span

- **Failure modes** (compressive failure of concrete)
 - More likely to occur in case of strong reinforcement mesh

behaviour of composite floors

Mechanical

Simple design method at 20°C

Simple design method of reinforced concrete slabs at 20 °C

• Failure modes (experimental evidences)

Mechanical behaviour of composite floors

Simple design method at 20°C

Simple design method at elevated temperatures

Tensile failure of reinforcement

Compressive failure of concrete

• Floor slab model at elevated temperatures (1)

- On the basis of the same model at room temperature
- Account for thermal bowing of the slab due to temperature gradient in depth which equals to:

$$w_{\theta} = \frac{\alpha (T_2 - T_1) \ell^2}{19.2 \ h}$$

where:

- h is the effective depth of the slab
- ℓ is the shorter span of the slab

Mechanical behaviour of composite floors

Simple design method at 20°C

Mechanical behaviour of composite floors

Simple design method at 20°C

Simple design method at elevated temperatures • Floor slab model at elevated temperatures (2)

and:

α is the coefficient of thermal expansion for concrete For LW concrete, EN 1994-1-2 value is taken $α_{LWC} = 0.8 \times 10^{-5} \text{ °K}^{-1}$ For NW concrete, a conservative value is taken $α_{NWC} = 1.2 \times 10^{-5} \text{ °K}^{-1} < 1.8 \times 10^{-5} \text{ °K}^{-1} (\text{EN 1994-1-2 value})$

 T_2 is the temperature of the slab bottom side (fire-exposed side)

T₁ is the temperature of the slab top side (unexposed side)

Floor slab model at elevated temperatures (3)

- Assuming mechanical average strain at a stress equal to half the yield stress at room temperature
- Deflection of slab on the basis of a parabolic deflected shape of the slab due to transverse loading:

$$w_{\varepsilon} = \sqrt{\left(\frac{0.5f_{sy}}{E_s}\right)\frac{3L^2}{8}} \le \frac{\ell}{30}$$

where:

- E_s is the elastic modulus of the reinforcement at 20°C
- f_{sy} is the yield strength of the reinforcement at 20°C
- L is the longer span of the slab

Mechanical behaviour of composite floors

Simple design method at 20°C

• Floor slab model at elevated temperatures (4)

Hence, the maximum deflection of the floor slab is:

$$w = \frac{\alpha (T_2 - T_1)\ell^2}{19.2 h} + \sqrt{\left(\frac{0.5 f_{sy}}{E_s}\right)\frac{3L^2}{8}}$$

 However, the maximum deflection of the floor slab is limited to:

$$w \le \frac{L+\ell}{30}$$

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

Simple design

temperatures

method at

elevated

Mechanical behaviour of composite floors

Simple design method at 20°C

- Conservativeness of the floor slab model at elevated temperatures
 - The estimated vertical displacements due to thermal curvature are underestimated compared to theoretical values
 - The thermal curvature is calculated based on the shorter span of the slab
 - Any additional vertical displacements induced by the restrained thermal expansion when the slab is in a post buckled state are ignored
 - Any contribution from the steel decking is ignored
 - The increase of the mesh ductility with the temperature increase is ignored

Mechanical behaviour of composite floors

Simple design method at 20°C

- Load bearing capacity of the floor slab model enhanced in presence of unprotected steel beams (1)
 - Catenary action of unprotected beams is neglected
 - The bending moment resistance of unprotected beams is taken into account with following assumptions:
 - Simple support at both ends
 - Heating of the steel cross-section calculated according to EN1994-1-2 4.3.4.2, considering shadow effect
 - Thermal and mechanical properties for both steel and concrete given in EN 1994-1-2

- Load bearing capacity of the floor slab model enhanced in presence of unprotected steel beams (2)
 - Enhancement of load bearing capacity from unprotected beams is:

$$\frac{8M_{Rd,fi}}{L_{ub}^{2}}\frac{n_{ub}}{B_{ub}} = \frac{8M_{Rd,fi}}{L^{2}}\frac{1+n_{ub}}{\ell}$$
where:

- **n**_{ub} is the number of unprotected beams
- M_{Rd,fi} is the moment resistance of each unprotected composite beam

behaviour of composite floors

Mechanical

Simple design method at 20°C

Simple design method at elevated temperatures

Background of simple design method

• Temperature calculation of composite slab

- On the basis of advanced calculation models
 - 2D finite difference method
 - Material thermal properties from EN 1994-1-2 for both steel and concrete
 - Shadow effect is taken into account for composite slabs

behaviour of composite floors

Mechanical

Simple design method at 20°C

- Load bearing capacity of protected perimeter beams
 - Load level $\eta_{fi,t}$

Additional load on secondary beams

- Critical temperature method
 - □ Composite beams (EN 1994-1-2)
 - R30

Simple design method at elevated temperatures

Dec. 2010

Mechanical

behaviour of

composite floors

Simple design

method at 20°C

- Other fire resistance ratings
- □ Steel beams (EN 1993-1-2)

2)
$$0.9 \eta_{fi,t} = \frac{f_{ay,\theta cr}}{f_{ay}} = \frac{M_{Rd,fi,b,i}}{M_{Rd,b,i}}\Big|_{i=1,2}$$
$$\eta_{fi,t} = \frac{f_{ay,\theta cr}}{f_{ay}} = \frac{M_{Rd,fi,b,i}}{M_{Rd,b,i}}\Big|_{i=1,2}$$
$$\eta_{fi,t} = \frac{f_{ay,\theta cr}}{f_{ay}} = \frac{M_{Rd,fi,b,i}}{M_{Rd,b,i}}\Big|_{i=1,2}$$

 Load bearing capacity of protected perimeter beams on the basis of global plastic mechanism

- Primary beams and secondary beams are designed separately
- For both primary and secondary beams
 - An alternative single yield line pattern linking the plastic hinges is considered
 - The required moment resistance M_{Rd,fi,b} is the same on all parallel perimeter beams, regardless of their actual crosssection
 - □ 2 cases are studied
 - 2 edge beams
 - at least 1 internal beam
 - □ The principle of virtual work is applied

Mechanical behaviour of composite floors

Simple design method at 20°C

Simple design method at

elevated

temperatures

1 internal beam

• Load bearing capacity of primary beams (1)

2 edge beams

Mechanical behaviour of composite floors

Simple design method at 20°C

- Load bearing capacity of primary beams (2)
 - 2 edge beams

$$M_{Rd,fi,b,l} = \frac{pL^{2}\ell - 8\mu M_{0}L_{eff}}{16}$$

At least one internal beam

$$M_{Rd,fi,b,l} = \frac{pL^{2}\ell - 8\mu M_{0}L_{eff}}{12}$$

where:

p is the maximum of the applied load and the floor loadbearing capacity

Mechanical behaviour of composite floors

Simple design method at 20°C

• Load bearing capacity of primary beams (3)

and:

L_{eff} is the effective length of the yield line

□ 2 edge steel beams

 $L_{eff} = L$

only 1 composite beam

$$L_{eff} = L - min\left(\frac{L}{2}; \frac{\ell}{8}\right)$$

□ 2 composite beams

$$L_{eff} = L - 2 \times min\left(\frac{L}{2}; \frac{\ell}{8}\right)$$

Mechanical behaviour of composite floors

Simple design method at 20°C

Load bearing capacity of protected secondary beams (1)

Mechanical behaviour of composite floors

Simple design method at 20°C

- Load bearing capacity of protected secondary beams (2)
 - 2 edge beams

$$M_{Rd,fi,b,2} = \frac{pL\ell^2 - 8(M_0\ell_{eff} + n_{ub}M_{Rd,fi})}{16}$$

- At least one internal beam

$$M_{Rd,fi,b,2} = \frac{pL\ell^2 - 8(M_0\ell_{eff} + n_{ub}M_{Rd,fi})}{12}$$

where:

p is the maximum of the applied load and the floor loadbearing capacity

Mechanical behaviour of composite floors

Simple design method at 20°C

 Load bearing capacity of protected secondary beams (3) and:

 ℓ_{eff} is the effective length of the yield line

2 edge steel beams

$$\ell_{eff} = \ell - n_{ub} \min\left(\frac{\ell}{1 + n_{ub}}; \frac{L}{4}\right)$$

only 1 composite beam

$$\ell_{eff} = \ell - \left(n_{ub} + \frac{1}{2}\right) \min\left(\frac{\ell}{1 + n_{ub}}; \frac{L}{4}\right)$$

□ 2 composite beams

$$\ell_{eff} = \ell - (n_{ub} + 1) min\left(\frac{\ell}{1 + n_{ub}}; \frac{L}{4}\right)$$

Mechanical behaviour of composite floors

Simple design method at 20°C

References

- Johansen, K.W. *Yield-line formulae for slabs.* Cement and Concrete Association. London: Taylor & Francis, 1972.
- Bailey, C.G. Membrane action of slab/beam composite floor systems in fire. Engineering Structures, October 2004, Vol. 26, Issue 12, pp. 1691-1703.
- EN 1994-1-2 : Eurocode 4 : Design of composite steel and concrete structures Part 1-2 : General rules Structural fire design, CEN.
- Fire Resistance Assessment of partially protected COmposite Floors (FRACOF): Engineering background. Technical Report, CTICM, SCI, 2009.