PART 5-6: Beam made of a hollow section

P. Schaumann, T. Trautmann

University of Hannover, Germany

J. Žižka

Czech Technical University in Prague, Czech Republic

1 TASK

At this example, a beam made of a welded hollow section has to be dimensioned. It is part of a hall roof structure. The length of the beam is 35.0 m and the beams are arranged at a distance of 10.0 m. It is charged with uniform loads and is restrained against lateral evasion. The beam is executed without any use of fire protection material. The required standard fire resistance class for the tensile bar is R 30.

Thickness of web:	$t_w = 25 \text{ mm}$
Cross-sectional area of the flange:	$A_f = 11,250 \text{ mm}^2$
Cross-sectional area of the web:	$A_w = 16,250 \text{ mm}^2$
Specific heat:	$c_a = 600 \text{ J/(kg·K)}$
Density:	$\rho_a = 7850 \text{ kg/m}^3$
Emissivity of the beam:	$\varepsilon_m = 0.7$
Emissivity of the fire:	$\varepsilon_r = 1.0$
Configuration factor	$\Phi = 1.0$
Coefficient of the heat transfer:	$\alpha_c = 25.0 \text{ W/m}^2\text{K}$
Stephan Boltzmann constant:	$\sigma = 5.67 \cdot 10^{-8} \mathrm{W/m^2K^4}$
Loads:	
Permanent actions:	
Beam:	$g_{a,k} = 4.32 \text{ kN/m}$
Roof:	$g_{r,k} = 5.0 \text{kN/m}$
Variable actions:	
Snow:	$p_{s,k} = 11.25 \text{ kN/m}$

2 FIRE RESISTANCE OF BEAM MADE OF A HOLLOW SECTION

2.1 Mechanical actions during fire exposure

The accidental situation is used for the combination of mechanical actions during fire exposure.

$$E_{dA} = E\left(\sum G_k + A_d + \sum \psi_{2,i} \cdot Q_{k,i}\right)$$

The combination factor for snow loads is $\psi_{2,1} = 0.0$. With this parameter, the design bending load is calculated to:

$$M_{fi,d} = \left[\left(4.32 + 5.0 \right) + 0.0 \cdot 11.25 \right] \cdot \frac{35.0^2}{8} = 1427.1 \text{ kNm}$$

2.2 Calculation of the steel temperature

The temperature increase of the steel section is calculated to:

$$\Delta \theta_{a,t} = k_{sh} \cdot \frac{A_m / V}{c_a \cdot \rho_a} \cdot \dot{h}_{net,d} \cdot \Delta t = 1.0 \cdot \frac{40}{600 \cdot 7850} \cdot 5 \cdot \dot{h}_{net} = 4.25 \cdot 10^{-5} \cdot \dot{h}_{net}$$

where:

 k_{sh} correction factor for the shadow effect ($k_{sh} = 1.0$) Δt time interval ($\Delta t = 5$ seconds)

 A_m/V section factor for the unprotected beam (Table 4.2)

$$A_m/V = 1/t = 1/0.025 = 40 \ 1/m$$

The net heat flux is calculated according to EN 1991 Part 1-2.

$$\dot{h}_{net} = \alpha_c \cdot (\theta_g - \theta_m) + \Phi \cdot \varepsilon_m \cdot \varepsilon_f \cdot \sigma \cdot \left(\left(\theta_g + 273 \right)^4 - \left(\theta_m + 273 \right)^4 \right)$$
$$= 25 \cdot \left(\theta_g - \theta_m \right) + 3.969 \cdot 10^{-8} \cdot \left(\left(\theta_g + 273 \right)^4 - \left(\theta_m + 273 \right)^4 \right)$$

The standard temperature-time curve is used for getting the gas temperatures.

 $\theta_g = 20 + 345 \cdot \log_{10} \left(8 \cdot t + 1 \right)$

EN 1991-1-2

Section 4.3

EN 1993-1-2

Section 4.2.5.1

Section 3.1

EN 1991-1-2

Section 3.2.1

The steel temperature-time curve of the hollow section is shown in Figure 3:

$$\Rightarrow \theta_{a,max,30} = 646 \ ^{\circ}\mathrm{C}$$

2.3 Verification in the temperature domain

The design moment resistance during fire exposure at the time t = 0 is needed to get the utilization factor.

$$M_{fi,Rd,0} = W_{pl} \cdot f_y \cdot k_{y,\theta,\max} / \gamma_{M,fi}$$

= 12,875,000 \cdot 355 \cdot \frac{1.0}{1.0} \cdot 10^{-6}
= 4570.6 \knm

where:

 $k_{y,\theta,max} = 1.0$ for $\theta = 20$ °C at the time t = 0 $\gamma_{M,fi} = 1.0$

and:

$$W_{pl} = 2 \cdot \left(\frac{2 \cdot A_w}{2} \cdot \frac{h_w}{4} + A_f \cdot \frac{h - t_w}{2}\right)$$

= $2 \cdot \left(16,250 \cdot \frac{650}{4} + 11,250 \cdot \frac{700 - 25}{2}\right)$
= 12,875,000 mm³

The utilization factor is calculated to:

$$\mu_0 = E_{fi,d} / R_{fi,d,0} = M_{fi,d} / M_{fi,Rd,0} = 1427.1 / 4570.6 = 0.31$$
 Section 4.2.4

The critical temperature $\theta_{a,cr}$ is given in Table 4.1 of the EN 1993 Part 1-2.

$$\Rightarrow \theta_{a,cr} = 659 \ ^{\circ}\mathrm{C}$$

Verification:

$$\frac{646}{659} = 0.98 < 1$$
 \checkmark

EN 1993-1-2

Section 4.2.3.3

2.4 Verification in the strength domain

To calculate the moment resistance the reduction factor $k_{y,\theta}$ has to be determined for the temperature $\theta_{a,max,30} = 646$ °C. This factor is given in Table 3.1 of the EN 1993 Part 1-2:

$$k_{v,\theta} = 0.360$$

Additionally, the adaptation factors κ_1 and κ_2 have to be determined.

The adaptation factor κ_l considers the non-uniform temperature distribution across the cross-section.

Section 4.2.3.3

Section 3.2.1

Table 1. Adaptation factor κ_l	
	κ_{l} [-]
Beam exposed on all four sides	1.0
Unprotected beam exposed on three sides with a composite or concrete slab on side four	0.7
Protected beam exposed on three sides with a composite or concrete slab on side four	0.85

The beam in this is an unprotected beam exposed to fire on four sides. Therefore κ_l is set to:

 $\kappa_{1} = 1.0$

The adaptation factor κ_2 considers the non-uniform temperature distribution along a beam.

Table 2. Ada	ptation	factor	κ_2
--------------	---------	--------	------------

	κ_2 [-]
At the supports of a statically indeterminate beam	0.85
In all other cases	1.0

The verification is done in the middle of the beam and it is statically determinate. So the adaptation factor κ_2 is set to:

 $\kappa_2 = 1.0$

Therefore the design moment resistance is calculated to:

$$M_{fi,t,Rd} = M_{pl,Rd,20^{\circ}C} \cdot k_{y,\theta} \cdot \frac{\gamma_{M,1}}{\gamma_{M,fi}} \cdot \frac{1}{\kappa_1 \cdot \kappa_2}$$

= (12,875,000 \cdot 355/1.1) \cdot 0.36 \cdot \frac{1.1}{1.0} \cdot \frac{1}{1.0 \cdot 1.0} \cdot 10^{-6} = 1645.4 kNm

Verification:

$$\frac{1427.1}{1645.4} = 0.87 < 1 \qquad \checkmark$$

REFERENCES

EN 1991, Eurocode 1: Actions on structures – Part 1-2: General actions – Actions on structures exposed to fire, Brussels: CEN, November 2002

EN 1993, Eurocode 3: Design of steel structures – Part 1-2: General rules – Structural fire design, Brussels: CEN, October 2006

QUALITY RECORD	WP5 DIFESEK			
Title	Example to EN 1994	Example to EN 1994 Part 1-2: Composite beam		
Eurocode reference(s)	EN 1991-1-2:2005; l 1-2:2006	EN 1991-1-2:2005; EN 1993-1-2:2006; EN 1994-1-1:2004; EN 1994- 1-2:2006		
ORIGINAL DOCUMENT				
	Name	Company	Date	
Created by	P. Schaumann	Univ.of Hannover	24/11/2005	
	T. Trautmann	Univ.of Hannover	24/11/2005	
Technical content checked by	M. Haller	ArcelorMittal	24/11/2005	
TRANSLATED DOCUMENT		-	-	
Translation made and checked by:	J. Chlouba	CTU in Prague	10/01/2008	
Translated resource approved by:	Z. Sokol	CTU in Prague	<mark>25/01/2008</mark>	
National technical contact:	F. Wald	CTU in Prague		