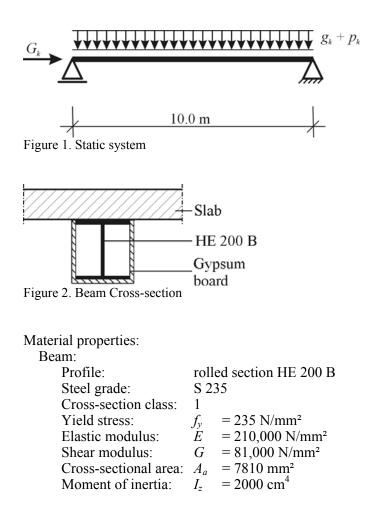
PART 5-4: Beam with bending and compression loads

P. Schaumann, T. Trautmann


University of Hannover, Germany

J. Žižka

Czech Technical University in Prague, Czech Republic

1 TASK

This example deals with a beam subjected to a uniform load, which causes a bending moment, and an axial load. Stability phenomena have to be considered. The beam is part of an office building. A hollow encasement of gypsum is chosen for fire protection. Due to a concrete slab the beam is exposed to fire on three sides. There is no shear-connection between the beam and the slab. The required standard fire resistance class for the beam is R 90.

Torsion constant:	ĩ	$= 59.3 \text{ cm}^4$
Warping constant:		$= 171,100 \text{ cm}^{6}$
Section moduli:	$W_{el,y}$	$y = 570 \text{ cm}^2$
	$W_{pl,y}$	$y = 642.5 \text{ cm}^3$
Encasement:		
Material:	gyps	sum
Thickness:	d_p	= 20 mm (hollow encasement)
Thermal conductivity	λ_p	= 0.2 W/(m·K)
Specific heat:	c_p	= 1700 J/(kg·K)
Density:	ρ_p	$= 945 \text{ kg/m}^3$
Loads:	-	
Permanent Loads:	G_k	= 96.3 kN
	g_k	= 1.5 kN/m
Variable Loads:		= 1.5 kN/m

2 FIRE RESISTANCE OF BEAM WITH BENDING AND COMPRESSION LOADS

2.1 Mechanical actions during fire exposure

The combination of mechanical actions during fire exposure shall be calculated as an accidental situation:

$$E_{dA} = E\left(\sum G_k + A_d + \sum \Psi_{2,i} \cdot Q_{k,i}\right)$$

The combination factor for office buildings is $\psi_{2,1} = 0.3$. The design loads under high temperature conditions are:

$$N_{fi,d} = 96.3 \text{ kN}$$

$$M_{fi,d} = [1.5 + 0.3 \cdot 1.5] \cdot \frac{10.0^2}{8} = 24.38 \text{ kNm}$$

2.2 Calculation of steel temperatures

The steel temperature is given by the Euro-Nomogram (ECCS No.89). Therefore the section factor A_p/V is needed. For a hollow encased member exposed to fire on three sides, the section factor is:

$$\frac{A_p}{V} = \frac{2 \cdot h + b}{A_a} = \frac{2 \cdot 20.0 + 20.0}{78.1} \cdot 10^2 = 77 \text{ m}^{-1}$$

With

$$\frac{A_p}{V} \cdot \frac{\lambda_p}{d_p} = 77 \cdot \frac{0.2}{0.02} = 770 \quad \frac{\mathrm{W}}{\mathrm{m}^3 \cdot \mathrm{K}} \,,$$

the critical temperature arises to:

$$\Rightarrow \quad \theta_{a,max,90} \approx 540 \ ^{\circ}\mathrm{C}$$

EN 1991-1-2

Section 4.3

EN 1993-1-2

Section 4.2.5.2

ECCS No.89

alysed for the problem of

$$\overline{V_{M,fi}} \leq 1$$

two reduction factors for
1 slenderness for the tem-
iction factors.
s in the fire situation, the
s have to be determined.
 $EN 1993-1-1$
Section 6.3.1.3
 $EN 1993-1-2$ Table 3.1:
 $EN 1993-1-2$
Section 3.2.1
nderness in the fire situa-
Section 4.2.3.2

EN 1993-1

\$ection 4.2.4

2.3 Verification in the temperature domain

Due to section 4.2.4 (2) of EN 1993-1-2 the verification in the temperature domain may not be accomplished, because of stability problems of the beam.

2.4 Verification in the strength domain

Members with a Class 1 cross-section should be analysed for the problem of flexural buckling and of lateral torsional buckling.

2.4.1 *Flexural buckling*

The verification for flexural buckling is:

$$\frac{N_{fi,d}}{\chi_{\min,fi} \cdot A \cdot k_{y,\theta} \cdot f_y / \gamma_{M,fi}} + \frac{k_y \cdot M_{y,fi,d}}{W_{pl,y} \cdot k_{y,\theta} \cdot f_y / \gamma_{M,fi}} \leq 1$$

The reduction factor $\chi_{min,fi}$ is the minimum of the two reduction factors for flexural buckling $\chi_{y,fi}$ and $\chi_{z,fi}$. The non-dimensional slenderness for the temperature θ_a is needed for the calculation of these reduction factors.

For calculation of the non-dimensional slenderness in the fire situation, the non-dimensional slenderness at ambient temperatures have to be determined.

$$\overline{\lambda}_{y} = \frac{L_{cr}}{i_{y} \cdot \lambda_{a}} = \frac{1000}{8.54 \cdot 93.9} = 1.25$$

$$\overline{\lambda}_z = \frac{L_{cr}}{i_z \cdot \lambda_a} = \frac{1000}{5.07 \cdot 93.9} = 2.10$$

The needed reduction factors $k_{y,\theta}$ and $k_{E,\theta}$ are given in EN 1993-1-2 Table 3.1:

$$\Rightarrow k_{y,\theta} = 0.656$$
$$k_{E,\theta} = 0.484$$

With the reduction factors, the non-dimensional slenderness in the fire situation can be determined:

$$\overline{\lambda}_{y,\theta} = \overline{\lambda}_y \sqrt{\frac{k_{y,\theta}}{k_{E,\theta}}} = 1.25 \sqrt{\frac{0.656}{0.484}} = 1.46$$
$$\overline{\lambda}_{z,\theta} = \overline{\lambda}_z \sqrt{\frac{k_{y,\theta}}{k_{E,\theta}}} = 2.1 \sqrt{\frac{0.656}{0.484}} = 2.44$$

With

$$\alpha = 0.65 \cdot \sqrt{235/f_y} = 0.65 \cdot \sqrt{235/235} = 0.65$$

and

$$\varphi_{y,\theta} = \frac{1}{2} \cdot \left(1 + \alpha \cdot \overline{\lambda}_{y,\theta} + \overline{\lambda}_{y,\theta}^2 \right) = \frac{1}{2} \cdot \left(1 + 0.65 \cdot 1.46 + 1.46^2 \right) = 2.04 ,$$

$$\varphi_{z,\theta} = \frac{1}{2} \cdot \left(1 + \alpha \cdot \overline{\lambda}_{z,\theta} + \overline{\lambda}_{z,\theta}^2 \right) = \frac{1}{2} \cdot \left(1 + 0.65 \cdot 2.44 + 2.44^2 \right) = 4.27$$

the reduction factors $\chi_{y,fi}$ and $\chi_{z,fi}$ can be calculated:

$$\chi_{y,fi} = \frac{1}{\varphi_{y,\theta} + \sqrt{\varphi_{y,\theta}^2 - \overline{\lambda}_{y,\theta}^2}} = \frac{1}{2.04 + \sqrt{2.04^2 - 1.46^2}} = 0.29$$
$$\chi_{z,fi} = \frac{1}{\varphi_{z,\theta} + \sqrt{\varphi_{z,\theta}^2 - \overline{\lambda}_{z,\theta}^2}} = \frac{1}{4.27 + \sqrt{4.27^2 - 2.44^2}} = 0.13$$

Verification:

$$\frac{96.3}{0.13 \cdot 78.1 \cdot 0.656 \cdot 23.5} + \frac{1.50 \cdot 2438}{642.5 \cdot 0.656 \cdot 23.5} = 0.98 < 1 \quad \checkmark \qquad \text{Section } 4.2.3.5$$

where:

$$\mu_{y} = (1.2 \cdot \beta_{M,y} - 3) \cdot \overline{\lambda}_{y,\theta} + 0.44 \cdot \beta_{M,y} - 0.29$$

= (1.2 \cdot 1.3 - 3) \cdot 1.46 + 0.44 \cdot 1.3 - 0.29
= -1.82
$$k_{y} = 1 - \frac{\mu_{y} \cdot N_{fi,d}}{\chi_{y,fi} \cdot A_{a} \cdot k_{y,\Theta} \cdot f_{y} / \gamma_{m,fi}} = 1 - \frac{-1.82 \cdot 96.3}{0.29 \cdot 78.1 \cdot 0.656 \cdot 23.5 / 1.0} = 1.50$$

2.4.2 Lateral torsional buckling

The second verification deals with the problem of lateral torsional buckling.

$$-\frac{N_{fi,d}}{\chi_{z,fi} \cdot A \cdot k_{y,\theta} \cdot f_y / \gamma_{M,fi}} + \frac{k_{LT} \cdot M_{y,fi,d}}{\chi_{LT,fi} \cdot W_{pl,y} \cdot k_{y,\theta} \cdot f_y / \gamma_{M,fi}} \le 1$$

For calculation of the non-dimensional slenderness in the fire situation, the non-dimensional slenderness at ambient temperatures has to be determined.

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_{pl,y} \cdot f_y}{M_{cr}}} = \sqrt{\frac{642.5 \cdot 23.5}{14,203.5}} = 1.03$$

where:

with

$$M_{cr} = \zeta \cdot \frac{\pi^2 \cdot E \cdot I_z}{l^2} \cdot \left(\sqrt{c^2 + 0.25 \cdot z_p^2} + 0.5 \cdot z_p\right)$$

= 1.12 \cdot \frac{\pi^2 \cdot 21,000 \cdot 2000}{(1.0 \cdot 1000)^2} \cdot \left(\sqrt{1241.9} + 0,25 \cdot \left(\frac{20}{2}\right)^2 - 0.5 \cdot \frac{20}{2}\right)

=14,203.5 kNcm

with:
$$c^2 = \frac{I_{\omega} + 0.039 \cdot l^2 \cdot I_T}{I_z} = \frac{171,100 + 0.039 \cdot 1000^2 \cdot 59.3}{2000} = 1241.9$$

During fire exposure, the non-dimensional slenderness changes to:

$$\overline{\lambda}_{LT,\theta} = \overline{\lambda}_{LT} \cdot \sqrt{\frac{k_{y,\theta}}{k_{E,\theta}}} = 1.03 \cdot \sqrt{\frac{0.656}{0.484}} = 1.20$$

EN 1993-1-2

EN 1993-1-1

DIN 18800-2

$$\phi_{LT,\theta} = \frac{1}{2} \cdot \left(1 + \alpha \cdot \overline{\lambda}_{LT,\theta} + \overline{\lambda}_{LT,\theta}^2 \right) = \frac{1}{2} \cdot \left(1 + 0.65 \cdot 1.20 + 1.20^2 \right) = 1.61,$$

the reduction factor $\chi_{LT,fi}$ is calculated to:

$$\chi_{LT,fi} = \frac{1}{\phi_{LT,\theta} + \sqrt{\phi_{LT,\theta}^2 - \overline{\lambda}_{LT,\theta}^2}} = \frac{1}{1.61 + \sqrt{1.61^2 - 1.20^2}} = 0.37$$

Verification:

$$\frac{96.3}{0.13 \cdot 78.1 \cdot 0.656 \cdot 23.5/1.0} + \frac{0.80 \cdot 2438}{0.37 \cdot 642.5 \cdot 0.656 \cdot 23.5/1.0}$$
Section 4.2.3.5
$$= 0.62 + 0.53 = 1.15 \le 1$$

where:

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{fi,d}}{\chi_{z,fi} \cdot A \cdot k_{y,\theta} \cdot \frac{f_y}{\gamma_{M,fi}}} = 1 - \frac{0.33 \cdot 96.3}{0.13 \cdot 78.1 \cdot 0.656 \cdot \frac{23.5}{1.0}} = 0.80$$

$$\mu_{LT} = 0.15 \cdot \overline{\lambda}_{z,\theta} \cdot \beta_{M,LT} - 0.15 < 0.9$$

= 0.15 \cdot 2.44 \cdot 1.3 - 0.15
= 0.33 < 0.9

REFERENCES

DIN 18800, Stahlbauten, Teil 2 Stabilitätsfälle, Knicken bei Stäben, Berlin: Beuth Verlag GmbH, Germany, November 1990

ECCS No.89, *Euro-Nomogram*, Brussels: ECCS – Technical Committee 3 – Fire Safety of Steel Structures, 1995

EN 1991, Eurocode 1: Actions on structures – Part 1-2: General actions – Actions on structures exposed to fire, Brussels: CEN, November 2002

EN 1993, Eurocode 3: Design of steel structures – Part 1-1: General rules, Brussels: CEN, May 2005

EN 1993, Eurocode 3: Design of steel structures – Part 1-2: General rules – Structural fire design, Brussels: CEN, October 2006

Literatur for MCr (for example: Steel Construction Manual)

QUALITY RECORD	WP5	WP5 DIE				
Title	Example to EN 1994	Example to EN 1994 Part 1-2: Composite beam				
Eurocode reference(s)	EN 1991-1-2:2005; 1-2:2006	EN 1991-1-2:2005; EN 1993-1-2:2006; EN 1994-1-1:2004; EN 1994- 1-2:2006				
ORIGINAL DOCUMENT						
	Name	Company	Date			
Created by	P. Schaumann	Univ.of Hannover	24/11/2005			
	T. Trautmann	Univ.of Hannover	24/11/2005			
Technical content checked by	M. Haller	ArcelorMittal	24/11/2005			
TRANSLATED DOCUMENT			-			

Translation made and checked by:	J. Chlouba	CTU in Prague	10/01/2008
Translated resource approved by:	<mark>Z. Sokol</mark>	CTU in Prague	25/01/2008
National technical contact:	F. Wald	CTU in Prague	