# PART 5-3: Composite slab

P. Schaumann, T. Trautmann

University of Hannover, Germany

J. Žižka

Czech Technical University in Prague, Czech Republic

### 1 TASK

A composite slab has to be dimensioned in the fire situation. It is part of a shopping centre and the span is 4.8 m. The slab will be dimensioned as a series of simply supported beams. The required standard fire resistance class for the slab is R 90.



| Loads:                   |                                 |
|--------------------------|---------------------------------|
| Permanent loads:         |                                 |
| Steel sheet              | $g_{p,k} = 0.13 \text{ kN/m}^2$ |
| Concrete:                | $g_{c,k} = 3.29 \text{ kN/m}^2$ |
| Finishing load:          | $g_{f,k} = 1.2 \text{ kN/m}^2$  |
| Variable loads:          |                                 |
| Live load:               | $p_k = 5.0 \text{ kN/m}^2$      |
|                          | <b>^</b>                        |
| Design sagging moment    |                                 |
| at ambient temperatures: | $M_{s,d} = 39.56 \text{ kNm}$   |
| -                        |                                 |

### 2 FIRE RESISTANCE OF A COMPOSITE SLAB

The composite slab has to be verified according to Section 4.3 and Annex D.

2.1 Geometrical parameters and scope of application



| $h_1 = 89 \text{ mm}$  | $h_2 = 51 \text{ mm}$  |                       |
|------------------------|------------------------|-----------------------|
| $l_1 = 115 \text{ mm}$ | $l_2 = 140 \text{ mm}$ | $l_3 = 38 \text{ mm}$ |

 Table 1.
 Scope of application for slabs made of normal concrete and re-entrant steel sheets

| Scope of application for | Existing geometrical |
|--------------------------|----------------------|
| re-entrant profiles [mm] | parameters [mm]      |
| $77.0 \le l_1 \le 135.0$ | $l_1 = 115.0$        |
| $110 \le l_2 \le 150.0$  | $l_2 = 140.0$        |
| $38.5 \le l_3 \le 97.5$  | $l_3 = 38.0$         |
| $50.0 \le h_1 \le 130.0$ | $h_1 = 89.0$         |
| $30.0 \le h_2 \le 70.0$  | $h_2 = 51.0$         |

# 2.2 Mechanical actions during fire exposure

The load is determined by the combination rule for accidental situations.

$$E_{dA} = E\left(\sum G_k + A_d + \sum \psi_{2,i} \cdot Q_{k,i}\right)$$

With  $\eta_{fi}$ , the design bending moment  $M_{fi,d}$  can be calculated:

 $M_{fi,d} = \eta_{fi} \cdot M_{sd} = 0.55 \cdot 39.56 = 21.76 \text{ kNm/m}$ 

According to EN 1994 Part 1-2, the load  $E_d$  may be reduced by the reduction factor  $\eta_{fi}$ . It is calculated to:

$$\eta_{fi} = \frac{G_k + \psi_{2,1} \cdot Q_{k,1}}{\gamma_G \cdot G_k + \gamma_{O,1} \cdot Q_{k,1}} = \frac{(0.13 + 3.29 + 1.2) + 0.6 \cdot 5.0}{1.35 \cdot (0.13 + 3.29 + 1.2) + 1.5 \cdot 5.0} = 0.55$$

EN 1991-1-2

Section 4.3

EN 1994-1-2

Section 2.4.2

### 2.3 Thermal insulation

The thermal insulation criteria "I" has to ensure the limitation of the thermal condition of the member. The temperature on top of the slab should not exceed 140 °C in average and 180 °C at its maximum.

The verification is done in the time domain. The time in which the slab fulfils the criteria "I" is calculated to:

$$t_i = a_0 + a_1 \cdot h_1 + a_2 \cdot \Phi + a_3 \cdot \frac{A}{L_r} + a_4 \cdot \frac{1}{l_3} + a_5 \cdot \frac{A}{L_r} \cdot \frac{1}{l_3}$$

The rib geometry factor  $A/L_r$  is equivalent to the section factor  $A_p/V$  for beams. The factor considers that the mass and height have positive effects on the heating of the slab.



Figure 4. Definition of the rib geometry factor

$$\frac{A}{L_r} = \frac{h_2 \cdot \left(\frac{l_1 + l_2}{2}\right)}{l_2 + 2 \cdot \sqrt{h_2^2 + \left(\frac{l_1 - l_2}{2}\right)^2}} = \frac{51 \cdot \left(\frac{115 + 140}{2}\right)}{140 + 2 \cdot \sqrt{51^2 + \left(\frac{115 - 140}{2}\right)^2}} = 26.5 \text{mm}$$

The view factor  $\Phi$  considers the shadow effect of the rib on the upper flange.

$$\Phi = \left[ \sqrt{h_2^2 + \left(l_3 + \frac{l_1 - l_2}{2}\right)^2} - \sqrt{h_2^2 + \left(l_1 - \frac{l_2}{2}\right)^2} \right] / l_3$$
$$= \left[ \sqrt{51^2 + \left(38 + \frac{115 - 140}{2}\right)^2} - \sqrt{51^2 + \left(\frac{115 - 140}{2}\right)^2} \right] / 38$$
$$= 0.119$$

The coefficients  $a_i$  for normal weight concrete is given in Table 2:

Table 2. Coefficients for determination of the fire resistance with respect to thermal insulation (see EN 1994-1-2, Annex D, Table D.1)

|                        | $a_0$ | $a_1$    | $a_2$ | $a_3$    | $a_4$  | $a_5$ |
|------------------------|-------|----------|-------|----------|--------|-------|
|                        | [min] | [min/mm] | [min] | [min/mm] | mm∙min | [min] |
| Normal weight concrete | -28.8 | 1.55     | -12.6 | 0.33     | -735   | 48.0  |
| Light weight concrete  | -79.2 | 2.18     | -2.44 | 0.56     | -542   | 52.3  |

With these parameters,  $t_i$  is calculated to:

$$t_i = (-28.8) + 1.55 \cdot 89 + (-12.6) \cdot 0.119$$
  
+ 0.33 \cdot 27 + (-735) \cdot 1/38 + 48 \cdot 27 \cdot 1/38  
= 131.48 min > 90 min \lambda

## 2.4 Verification of the load carrying-capacity

The plastic moment design resistance is calculated to:

$$M_{fi,t,Rd} = \sum A_i \cdot z_i \cdot k_{y,\theta,i} \cdot \left(\frac{f_{y,i}}{\gamma_{M,fi}}\right) + \alpha_{slab} \cdot \sum A_j \cdot z_j \cdot k_{c,\theta,j} \cdot \left(\frac{f_{c,j}}{\gamma_{M,fi,c}}\right)$$

To get the reduction factors  $k_{y,\theta}$  for the upper flange, lower flange and the web, the temperatures have to be determined. These are calculated to:

$$\theta_a = b_0 + b_1 \cdot \frac{1}{l_3} + b_2 \cdot \frac{A}{L_r} + b_3 \cdot \Phi + b_4 \cdot \Phi^2$$

The coefficients  $b_i$  can be obtained from Table 3:

Fire Part of resis $b_0$  $b_1$  $b_2$ Concrete *b*<sub>3</sub> [°C]  $b_4$  [°C] steel [°C] [°C·mm] [°C/mm] tance sheet [min] Normal Lower 951 -1197 -2.32 86.4 -150.7 weight flange concrete 60 Web 661 -833 -2.96 537.7 -351.9 Upper 340 -3269 -2.62 1148.4 -679.8 flange Lower 1018 -839 -108.1 -1.55 65.1 flange 90 Web 816 -959 -2.21 464.9 -340.2 Upper 618 -2786 -1.79 767.9 -472.0 flange Lower 1063 -679 -1.13 46.7 -82.8 flange 925 -949 120 Web 344.2 -267.4 -1.82 Upper 770 -2460 -1.67 -379.0 592.6 flange

 Table 3. Coefficients for the determination of the temperatures of the parts of the steel decking (see EN 1994-1-2, Annex D, Table D.2)

For the different parts of the steel sheet, the temperatures are: Lower flange:

$$\theta_{a,l} = 1018 - 839 \cdot \frac{1}{38} - 1.55 \cdot 27 + 65.1 \cdot 0.119 - 108.1 \cdot 0.119^2$$
  
= 960.29 °C

Web:

$$\begin{split} \theta_{a,w} = &816 - 959 \cdot \frac{1}{38} - 2.21 \cdot 27 + 464.9 \cdot 0.119 - 340.2 \cdot 0.119^2 \\ = &781.60 \ ^\circ \mathrm{C} \end{split}$$

Upper flange:

$$\begin{aligned} \theta_{a,l} &= 618 - 2786 \cdot \frac{1}{38} - 1.79 \cdot 27 + 767.9 \cdot 0.119 - 472.0 \cdot 0.119^2 \\ &= 580.87 \ ^{\circ}\text{C} \end{aligned}$$

Section 4.3.2

Section D.2

To get the required load carrying-capacity during fire exposure, reinforcing bars have to be installed which normally are neglected for the ambient temperature design. For each rib, one reinforcing bar  $\emptyset$  10 mm is chosen. The position of the bar can be seen in Figure 5.



Figure 5. Arrangement of the reinforcing bar

The temperature of the reinforcing bar is calculated to:

$$\theta_{s} = c_{0} + c_{1} \cdot \frac{u_{3}}{h_{2}} + c_{2} \cdot z + c_{3} \cdot \frac{A}{L_{r}} + c_{4} \cdot \alpha + c_{5} \cdot \frac{1}{l_{3}}$$

where:

$$\frac{1}{z} = \frac{1}{\sqrt{u_1}} + \frac{1}{\sqrt{u_2}} + \frac{1}{\sqrt{u_3}}$$
$$= \frac{1}{\sqrt{l_1/2}} + \frac{1}{\sqrt{l_1/2}} + \frac{1}{\sqrt{h_2 + 10}} \text{ (simplified)}$$
$$= \frac{1}{\sqrt{57}} + \frac{1}{\sqrt{57}} + \frac{1}{\sqrt{61}}$$
$$= 0,393 \text{ 1/mm}^{0.5}$$

$$\Rightarrow$$
 z = 2.54 mm<sup>0.5</sup>



Figure 6. Definition of the distances  $u_1$ ,  $u_2$ ,  $u_3$  and the angle  $\alpha$ 

The coefficients  $c_i$  for normal weight concrete is given in Table 4.

Table 4. Coefficients for the determination of the temperatures of the reinforcement bars in rib (see EN 1994-1-2, Annex D, Table D.3)

| Concrete | Fire<br>resis-<br>tance<br>[min] | <sup>c</sup> <sub>0</sub><br>[°C] | <i>c</i> <sub>1</sub><br>[°C] | $c_2$ [°C/mm <sup>0.5</sup> ] | <i>c</i> <sub>3</sub><br>[°C/mm] | C₄<br>[°C/°] | <i>c</i> <sub>5</sub><br>[°C] |
|----------|----------------------------------|-----------------------------------|-------------------------------|-------------------------------|----------------------------------|--------------|-------------------------------|
| Normal   | 60                               | 1191                              | -250                          | -240                          | -5.01                            | 1.04         | -925                          |
| weight   | 90                               | 1342                              | -256                          | -235                          | -5.30                            | 1.39         | -1267                         |
| concrete | 120                              | 1387                              | -238                          | -227                          | -4.79                            | 1.68         | -1326                         |
|          |                                  |                                   |                               |                               |                                  |              |                               |

With these parameters, the temperature of the reinforcing bar is:

$$\theta_{s} = 1342 + (-256) \cdot \frac{61}{51} + (-235) \cdot 2,54$$
$$+ (-5,30) \cdot 27 + 1,39 \cdot 104 + (-1267) \cdot \frac{1}{38}$$
$$= 407.0 \text{ °C}$$

For the steel sheet, the reduction factors  $k_{y,i}$  are given in Table 3.2 of the EN 1994-1-2. For the reinforcement the reduction factor is given in Table 3.4, because the reinforcement bars are cold worked.

The carrying-capacity for each part of the steel sheet and the reinforcing bars can now be calculated.

| Table 5. Reduction factors and carrying-capacities |                             |                                      |                                       |                                 |               |  |
|----------------------------------------------------|-----------------------------|--------------------------------------|---------------------------------------|---------------------------------|---------------|--|
|                                                    | Temperature $\theta_i$ [°C] | Reduction<br>factor<br>$k_{y,i}$ [-] | Partial area $A_i$ [cm <sup>2</sup> ] | $f_{y,i}$ [kN/cm <sup>2</sup> ] | $Z_i$<br>[kN] |  |
| Lower flange                                       | 960.29                      | 0.047                                | 1.204                                 | 35.0                            | 1.98          |  |
| Web                                                | 781.60                      | 0.132                                | 0.904                                 | 35.0                            | 4.18          |  |
| Upper flange                                       | 580.87                      | 0.529                                | 0.327                                 | 35.0                            | 6.05          |  |
| Reinforcement                                      | 407.0                       | 0.921                                | 0.79                                  | 50.0                            | 36.38         |  |

The plastic neutral axis is calculated as equilibrium of the horizontal forces. The equilibrium is set up for one rib  $(b = l_1 + l_2)$ .

$$z_{pl} = \frac{\sum Z_i}{a_{slab} \cdot (l_1 + l_3) \cdot f_c} = \frac{1.98 + 4.18 + 6.05 + 36.38}{0.85 \cdot (115 + 38) \cdot 25 \cdot 10^{-3}} = 15.0 \text{ mm}$$

kNcm

-36.44 Σ 380.39

The plastic moment resistance for one rib is determined to:

| Table 6. Calculation of the moment resistance of one rib |            |                        |           |  |  |
|----------------------------------------------------------|------------|------------------------|-----------|--|--|
|                                                          | $Z_i$ [kN] | $z_i$ [cm]             | $M_i$ [k] |  |  |
| Lower flange                                             | 1.98       | 14.0                   | 27.72     |  |  |
| Web                                                      | 4.18       | 14.0 - 5.1 / 2 = 11.45 | 47.86     |  |  |
| Upper flange                                             | 6.05       | 14.0 - 5.1 = 8.9       | 53.85     |  |  |
| Reinforcement                                            | 36.38      | 14.0 - 5.1 - 1.0 = 7.9 | 287.4     |  |  |

| Table 6. | Calcul | lation | of the | moment | t resistance | of | one ri | b |
|----------|--------|--------|--------|--------|--------------|----|--------|---|
|          |        |        |        |        |              |    |        |   |

With the plastic moment of  $M_{pl,rib} = 3.80$  kNm and the width  $w_{rib} = 0.152$  m of one rib, the plastic moment resistance of the composite slab is:

1.50/2 = 0.75

 $M_{fi.Rd} = 3.80/0.152 = 25.00$  kNm/m

-48.59

Verification:

Concrete

$$\frac{21.76}{25.00} = 0.88 < 1 \qquad \checkmark$$

#### REFERENCES

EN 1991, Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire, Brussels: CEN, November 2002

EN 1994, Eurocode 4: Design of composite steel and concrete structures -Part 1-2: General Rules - Structural Fire Design, Brussels: CEN, November 2006

| QUALITY RECORD                   | WP5 DIF                                                                    |                       |            |  |  |
|----------------------------------|----------------------------------------------------------------------------|-----------------------|------------|--|--|
| Title                            | Example to EN 1994 Par                                                     | t 1-2: Composite beam |            |  |  |
| Eurocode reference(s)            | EN 1991-1-2:2005; EN 1993-1-2:2006; EN 1994-1-1:2004; EN 1994-<br>1-2:2006 |                       |            |  |  |
| ORIGINAL DOCUMENT                |                                                                            |                       |            |  |  |
|                                  | Name                                                                       | Company               | Date       |  |  |
| Created by                       | P. Schaumann                                                               | Univ.of Hannover      | 24/11/2005 |  |  |
|                                  | T. Trautmann                                                               | Univ.of Hannover      | 24/11/2005 |  |  |
|                                  |                                                                            |                       |            |  |  |
| Technical content checked by     | M. Haller                                                                  | ArcelorMittal         | 24/11/2005 |  |  |
| TRANSLATED DOCUMENT              | -                                                                          | -                     | -          |  |  |
| Translation made and checked by: | J. Chlouba                                                                 | CTU in Prague         | 10/01/2008 |  |  |
| Translated resource approved by: | <mark>Z. Sokol</mark>                                                      | CTU in Prague         | 25/01/2008 |  |  |
| National technical contact:      | F. Wald                                                                    | CTU in Prague         |            |  |  |
|                                  |                                                                            |                       |            |  |  |