DIFISEK

PART 4 SOFTWARE FOR FIRE DESIGN

Safety criterion

R_{required}: "R" is assumed to be satisfied where the load bearing function is maintained during the required time of fire exposure.

Prescriptive approach: national fire regulations Performance based approach: fire safety engineering

R_{req}

Fire design software - Classification

The most common classification of them is broken down in five categories:

Fire thermal models
Fire resistance models

Egress models

- Detector response models
- Miscellaneous models

R_{req} (performance based)

Fire thermal models

Fire thermal models

Fire thermal models					
Nominal	Standard temperature – time				
temperature –	CL	<u>irve</u>			
time curves	External	fire curve			
(Prescriptive rules)	Hydrocarbon curve				
	Simplified fire models	Compartment fires			
Natural fires (Performance based rules)		Localised fires			
	Advanced fire	Zone models			
	models	Field models			

Zone models

Zone models

There are two principal types of zone models:

Two Zone models: fire compartment considered as divided in two zones (hot - cold) with homogeneous properties
One Zone models: fire compartment considered as a furnace

There are one compartment models (only one compartment) and multicompartment models (considered several adjoining compartments)

Resolution of equations

- Mass balance
- Energy balance

Zone models - Ozone

Software sheet – general description					
Name	OZone				
Version	2.2.2 Year 2002				
Country	Luxembourg Language English				
System	Windows	Size	5 MB		
Authors	J. F. Cadorin, J.	M. Franssen	(Uni. Liège)		
	L.G. Cajot, M. H	aller, J.B. Sch	nleich		
Organisation	Arcelor LCS Res	search Centre)		
Application field	Fire Thermal mo	odel - Zone			
Availability	Free – www.ulg.ac.be				
	Free – www.sections.arcelor.com				
Contact	Arcelor ASC: asc.tecom@arcelor.com				
Formulation	Based on mass and energy balance equations				
Short description	Model to predict the thermal action of a				
	defined fire. Hea	at transfer to s	simple steel		
	elements and tir	ne to collapse	e (EN 1993-1-2)		
	incorporated				

Ozone - Main menu

D

<u>E</u> lement
e <u>R</u> esistance
E

Ozone - Case study

SEK

Fire scenario: fire in a restaurant at third storey Design fire: fully developed fire - tα growth phase Objective: fire resistance of steel beams (Requirement of R90)

Fire compartment definition:

Part 4: Software for Fire Design

Ozone - Input data: Definition of Fire

NFSC <u>D</u> esign Fire] (User Defined Fire	Max Fire <u>A</u> rea:	150 m² 1 m Fuel Height	1 m
Decupancy	Fire Growth	RHRf] • • • • = • • • • • • • • •	Fire Load qf.k	Danger of Fire
Jser Defined	Rate 150	[Kvv/m-]	250	300% Fractile [MJ/m ²]	Activation 1
Description	Fast				Medium
Independent Water	Supplies (🖲 <u>1</u>	$\bigcirc \underline{2}$) $\gamma_{n,2} = 1$	Danger of Fire Activ	q, vation: ^y q,	2 = 1

Part 4: Software for Fire Design

DIFSEK

Ozone - Input data: Criteria for switching from 2 zones to 1 zone

Upper Layer			
	Transition (2 Zones to 1 Zone) Criteria: —		
	Upper Layer Temperature	≥ 500 °C	
Lower Layer	Combustible in Upper Layer + U.L.	≥ Combustible Ignition Tempera	ature
	Combustible Ignition T	emperature: 300 °C	
↓ ↓	Interface Height	≤ 0,2 Compartment H	eight
	Fire Area	≥ 0,25 Floor Area	
	- Select Analysis Strategy-		
	Combination (default)		
	© 2 <u>Z</u> ones		
	O 1 Zone		
	and the second second	and the second	
EK	Part 4: Software for Fire	Design	

D

Ozone - Output

Steel Temperature

Switch from 2 zones to 1 zone: 120" (fire governed by ventilation)

DIFISEK

Part 4: Software for Fire Design

Field models

Field models

Field models - Fluent

Software sheet – general description				
Name	Fluent			
Version	6.1.22	Year	2004	
Country	USA	Language	English	
System	Windows/UNIX			
Organisation	Fluent Inc.			
Application field	Fire Thermal model - Field.			
Availability	Commercial software			
Contact	www.fluent.com			
Formulation	Based on mass and energy balance			
	equations.			
Short description	General purpose	CFD	1.11	

Fluent - Input data

Definition of materials, physical models and boundary conditions is required. Some of them shown in this slide

Fluent- Output data

User friendly pre and post processing, but a deep knowledge on fire engineering and CFD is required.

Examples of post processing

Smoke control: CO concentration

Radiation values

Predicted steel temperatures

Part 4: Software for Fire Design

Fire resistance models

Fire resistance models (FRM)

Structural design procedure			Tabulated data	Simple calculation methods	Advanced methods
	Member analysis	Calculation of mechanical	YES	YES	YES
Prescriptive based rules	Prescriptive Analysis of part of the structure actions and boundaries	actions and boundaries	NO	YES (if available)	YES
	Analysis of entire structure	Selection of mechanical actions	NO	NO	YES
	Member analysis	Calculation of mechanical	NO	YES (if available)	YES
Performance based rules	Analysis of part of the structure	actions and boundaries	NO	NO	YES
	Analysis of entire structure	Selection of mechanical actions	NO	NO	YES

Simplified FRM - Elefir

Software sheet – general description					
Name	Elefir				
Version	2.1	Year	1998		
Country	Belgium	Language	English		
System	Windows	Size	8 MB		
Authors	D. Pintea, L	. Mievis, G. C	Sustin <mark>, J. M.</mark>		
	Franssen				
Organisation	University o	f Liege			
Application field	Fire resistance model (simplified)				
Availability	Free – <u>www.ulg.ac.be</u>				
Contact	University of Liege - www.ulg.ac.be				
Formulation	Based on EN 1993-1-2 (eurocode 3)				
Short description	Software for the calculation of the fire				
	resistance of simple steel elements				
	made of ope	en sections.			

Elefir - Main menu

Analysis Options

	Standard • ENV 1993-1-2 (Eurocode 3) • NBN ENV 1993-1-2 (Belgian NAD) Analysis • Element Submitted to Iension • Element Submitted to Compression • Element Submitted to Bending and Compression • Ienperature Function of Time • Time Function of Temperature	
<u>A</u> bout	Exit <u>N</u> ext	

Part 4: Software for Fire Design

Elefir - Input data

Loads	Select Load: In-plan	re lateral loads + End Moments s 7 + Mq	Load input wind	dow
	$ \begin{array}{c} \hline \underline{D} \text{ is tributed Load} & \hline \underline{C} \text{ or} \\ M_{\underline{Q}} = & 500 \\ M_{\underline{1}}(\text{ can be > or < 0)} = & 100 \\ M_{\underline{2}}(\text{ can be > or < 0)} = & -100 \\ \hline \end{array} \\ \hline \begin{array}{c} Axial Compression \\ \underline{N} = & 100 \\ \hline \end{array} \\ kN \end{array} $	Incentrated Load KN.m KN.m Cancel OK	elect Fire Exposure C Eire on Four Sides Fire on Ihree Sides	
Protec	ction input indow		Select Section Protection C No Protection C Contour Encasement D Hollow Encasement	
		Part 4: Software for	Exit C	Cancel Continue

Elefir - Output data

Results Elefir

Results _____

Data ____

SEK

Date : 05/08/2004 Time : 13:30:06

Calculation following ENV 1993-1-2 Time function of temperature

Type of Cross-Section : IPE Profile : IPE 300 Area of the cross-section : 53,81 cm² Critical Temperature : 486 °C

Exposed to Fire on 3 faces Temperature-Time Curve : ISO Curve

Type of Protection : Contour Encasement ==> Section factor A/V = 187.7063 m-1Type of material : rock/glass wool Thickness : 10 mm Specific Heat : 850 J/kg.°K Thermal Conductivity : 0,04 W/m.°K Unit Mass : 150 kg/m³

Time/Temperature evolution in the steel section calculated by ELEFIR using relation 4.22 of ENV 1993-1-2 Time [min.] ; Temperature [°C]

o • 2	20	Temperature Curve	
U; 2 5; 4 10; 15; 20; 25; 30;	20 43 77 112 147 181 215		Modify Profile IPE 300 Cprliguration exposed on 3 sides, contour encasement Protection rock/glass wool, thickness: 10 mm
35 ;	247		C Hadronabor Dava
40 ;	278		C Iso cave
45 ;	308	- (J) (2 - 3)	C External Fire Curve C ASTM Curve
50 ;	337	A SALE	C Other Eld
55 ;	365		
60 ;	391		The profile reaches 458 °C after 75.86 minutes
65 ;	416		Section factor: 187.7 m ⁻¹
70 ;	441		
75 ;	464		
79,9	; 486	File	<u>G</u> raph <u>Exit</u> Main menu <u>C</u> alcul

The temperature of 486 °C is obtained after 75.86 min.

25/54

Simplified FRM - Potfire

Software sheet – general description					
Name	Potfire				
Version	1.11	Year	2001		
Country	France	Language	English		
System	Windows	Size	15 MB		
Authors	G. Fouquet,	, G. Tabet, B.	Zhao, J.		
	Kruppa				
Organisation	CTICM, CIDECT, TNO				
Application field	Fire resistance model (simplified)				
Availability	Free – <u>www.cidect.org</u>				
Contact	CIDECT - www.cidect.org				
Formulation	Based on EN 1994-1-2 Annex G				
Short description	Fire resistance duration of				
	unprotected filled hollow section				
	columns				

Potfire - Main menu/Input-output data

PotFire	F		Potfire	
Section		Material characteristics		
Type of section Circular	•	Yield strength of steel section	355 N/mm²	
Dimensions of steel section	_	Yield strength of re-bars	500 N/mm ²	
Diameter	323.9 mm	Compressive strength of concrete (cylinder at 28 days)	30 N/mm²	4
Wall thickness	6 mm	Eccentricity of the load		
Reinforcement bars		Eccentric <u>it</u> y to buckling axis	O mm	
By nr of bars	С Ву %	Calculation of		
Re-bars : # 🛛 😹	12 mm	Ultimate load C Eire resistance	e duration	
Concrete covering from rebars axis	mm	Fire duration 60	min	
Equal to	1184191 %			
		Result		
suckling length		Non-dimensional slenderness 41	40.0000	
Buckling length	3.0 m	Ultimate load 15	82 kN	

10

DIFSEK

Part 4: Software for Fire Design

Simplified FRM - AFCC

Software sheet – general description							
Name	AFCC						
Version	3.06	Year	2004				
Country	Luxembourg	Language	English				
System	Windows	Size	2.5 MB				
Authors	H. Colbach						
Organisation	Arcelor LCS Research Centre						
Application field	Fire resistance model (simplified)						
Availability	Free – www.sections.arcelor.com						
Contact	Arcelor ASC: asc.tecom@arcelor.com						
Formulation	Based on EN 1994-1-2						
Short description	Composite columns fire design						

AFCC - Main menu/input data

Part 4: Software for Fire Design

AFCC - Output data

Simplified FRM - AFCB

Software sheet – general description							
Name	AFCB						
Version	3.07	Year	2004				
Country	Luxembourg	Language	English				
System	Windows	Size	3 MB				
Authors	H. Colbach						
Organisation	Arcelor LCS Research Centre						
Application field	Fire resistance model (simplified)						
Availability	Free – www.sections.arcelor.com						
Contact	Arcelor ASC: asc.tecom@arcelor.com						
Formulation	Based on EN 1994-1-2						
Short description	Composite beams fire design						

AFCB - Main menu / input data

Part 4: Software for Fire Design

AFCB - Output data

Advanced calculation methods

The advanced calculation methods have three principal phases

Definition of the structure (finite elements)

Pre-processing

Material definition (linear/non-linear)

Selection of mechanical and thermal actions and boundaries.

Processing - calculation phase

Post-processing - output reporting

DIFSEK

Advanced FRM - Safir

Software sheet – general description								
Name	Safir							
Version	9.8	Year	2002					
Country	Belgium	Language	English					
System	Fortran/Visual Basic	Size						
Authors	J. M. Franssen							
Organisation	University of Liege							
Application field	Fire resistance model	(advanced)						
Availability	Commercial software							
Contact	JM.Franssen@.ulg.ac.	.be						
Formulation	Finite element code							
Short description	Finite element model f	or the beha	viour of					
	the structures in fire.							

Advanced FRM - Ansys

nSoftware sheet – general description								
Name	Ansys							
Version	8.1	Year	2003					
Country	U.S.A	Language	English					
System		Size						
Authors								
Organisation	ANSYS Inc.							
Application field	Fire resistance model (advanced)							
Availability	Commercial software							
Contact	Ansys – www.ansys.com							
Formulation	Finite element code							
Short description	General purpose software							

Advanced FRM - Example: Abaqus

Software sheet – general description								
Name	Abaqus							
Version	6.3	Year	2003					
Country	U.S.A	Language	English					
System	MS-DOS	Size						
Authors	Hibbitt, Krlsson and Sorensen							
Organisation	ABAQUS Inc.							
Application field	Fire resistance model (advanced)							
Availability	Commercial software							
Contact	Abaqus – www.abaqus.com							
Formulation	Finite element code							
Short description	General purpose software							

Fire scenario: fire in an industrial building Design fire: ISO curve Objective: definition of fire resistance of the whole structure and the influence of the affected zone on the rest of the structure.

SEK

3D - With more than one frame with hot purlins (Dynamic)

A dynamic analysis allow us to predict the collapse phase

DIFSEK

Part 4: Software for Fire Design

Egress and detector response models

42/54

Egress models - Exodus

Software sheet – general description							
Name	Exodus	Exodus					
Version	4.0	Year	2004				
Country	England	Language	English				
System	Windows	Size					
Authors	E. Galea, St.	Gwyne, S. I	Blake,				
	L. Filippidis						
Organisation	University of	Greenwich					
Application field	Egress mode	el					
Availability	Commercial	– <u>www.fseg</u> .	<u>gre.ac.uk</u>				
Contact	E.R.Galea@	greenwich.a	<u>c.uk</u>				
Formulation							
Short description	Egress mode	el based on h	numan				
	behaivour						

Egress models - EXODUS

•Simulation allow user to asses the level of safety along the evacuation.

44 / 54

Egress models - EXODUS

Results:

Simulations can be viewed with the post-processing tool VR-EXODUS

Detector response models - Jet

Software sheet – general description								
Name	Jet							
Version	1.0	1.0 Year 1999						
Country	U.S.A	Language	English					
System	Windows	Size	4 MB					
Authors	W. D. Davids							
Organisation	NIST (National	Institute of S	Standards and					
	Technology)							
Application field	Detector respon	nse mo <mark>dels</mark>						
Availability	Free – <u>www.fire</u>	e.nist.gov						
Contact	NIST - www.fire	e.nist.gov						
Formulation	Zone model ba	sed on code	LAVENT					
	Algorithm for pl	ume centerli	ne temperature					
	Algorithm for ceiling jet depending on							
	smoke layer de	pth						
Short description Sprinkler response – Time to activation								

Jet - Main menu / input data

47 / 54

SOFTWARE

IN CZECH/ENGLISH LANGUAGE

Software available in Czech/English language

Freeware www.access-steel.cz

Calculation of parametrical temperature curve

Heat transfer to protected and unprotected steel elements

Fire resistance of steel elements

Commercial software www.fine.cz > Fin 10 - Steel Fire

Czech and English languages

Part 4: Software for Fire Design

49/54

Parametrical temperature curve

Teelbiz - Parametric T-T curve [krivka1.ttc]

Soubor Nápověda

🕑 Přid	lat	🕑 Vloži	t 🔳	Odstrani	t	۷	ýška stěn	3.	000 [m]		
+ - *	Začá	tek	Kon	ec		Materiál		Otv	or		
0/4	X[m]	Y [m]	X [m]	Y [m]	p [kg/m ³]	c []/kg/K]	$\lambda[W/m/K]$	b[m]	h[m]		3
▶ 1	0.000	0.000	10.000	0.000	1300.0	2200.00	0.15	3.000	1,600	4	1
2	10.000	0.000	10.000	5.000	1300.0	2200.00	0.15	0.000	0.000		
3	10.000	5.000	0.000	5.000	1300.0	2200.00	0.15	0.000	0.000		
4	0.000	5.000	0.000	0.000	1300.0	2200.00	0.15	0.000	0.000		4 2
/lactoocti m	steriálu po	dahu			Vlactor		ilu stropu –			<u> </u>	1
ustota p	iaceriaiu po		300.0	[kg/m ³]	Hustota	i p	na scropa	300).0 [kg/m	31	
Iěrné teplo	c	i i i	1200.00	[]/ka/K]	Měrné t	eplo c		1200.	00 []/ka	/K]	
epelná vod	livost λ	i i i	0.15	[W/m/K]	Tepelná	vodivost	λ.	0.	15 [W/m	i/K]	Graf
Ostatní data	a							2. 12			22
oba rozvoji	e požáru t _{li}	m							20 [min]		l l l l l l l l l l l l l l l l l l l
harakterist	ická hustot	a požárníh	io zatížení i	na jednotk	u podlahov	é plochy g	f. k	250	0.0 [MJ/n	n ²]	- 90 te
oučinitel vliv	vu velikosti	požárního	úseku na i	nebezpečí	vzniku pož	áru ő _{g1}		1.	50 [-]		
oučinitel vliv	vu druhu pi	rovozu na	nebezpečí	vzniku poj	žáru ó _{q2}	55		1.	00 [-]		8
oučinitel vliv	vu aktivníci	n protipoža	árních opat	ření ô _n				1.	00 [-]		8
/ýsledky —											
Výpočet p	oroběhl bez	chyb.								-	
Výsledkem	n výpočtu j:	sou hodno	ty paramel	trů, určují	tích parame	trickou tep	olotní křivku	pro daný	požární		čas [m

C:\zdenek\ved-sefie\krivka1.ttc

DFF

SEK

Part 4: Software for Fire Design

- O ×

Heat transfer

Teelbiz - Heat Transfer [prurez1.htr] Soubor Nápověda - Vlastnosti průřezu Graf Typ průřezu: válcovaný teplota [°C] 945.3 I 320 7770 [mm²] Plocha 845.0 Obyod 1109 [mm] Upravit 780.0 - Vlastnosti teplotní křivky Doba sledování vývoje křivky 60 [min] 715.0 Typ teplotní křivky: normová • 650.0 Doba rozvoje požáru t_{lim} 585.0 Faktor otvorů O 520.0 Hustota požár, zatížení g_{tě} 455.0 Vlastnosti materiálu požární ochrany 390.0 Typ požárního detailu: shora ochráněný, vystavený žáru do výšky h 325.0 Výška h 300.0 [mm] 260.0 Materiál požární ochrany : 詩 195.0 Tioušťka [mm] Katalog 130.0 Šířka [mm] Výška

20.0

🔄 teplota plynu 🔄 teplota oceli

 Tabulka

 Součinitel průřezu Am/V = 109.459 m·1

 čas
 teplota plynů

 [h:mm:ss]
 [°C]

 0:00:00
 20.0

C:\zdenek\ved-sefie\prurez1.htr

DIFSEK

Part 4: Software for Fire Design

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0

čas [min]

- 0 ×

Fire resistance

SEK

Part 4: Software for Fire Design

Fin10 - Steel Fire - Input data

	Finto - Ocel Podar (C-VPregram Files/Finel/ int0/Ubemo01.spr) Sobor Usraw Data Netweri Nacondo P & Sobor Usraw Data Netweri Natetri Nater, shora odrainéry	
***	Input of fire protection data	
DIFSEK	Part 4: Software for Fire Design	

53/54

Fin10 - Steel Fire - Output data

Part 4: Software for Fire Design

54/54

Thank you for your attention

Part 4: Software for Fire Design