

Part 3: Mechanical response

Resistance to fire - Chain of events

How structures react to fire

➤ Temperature rise → thermal expansion + loss of both stiffness and resistance → additional deformation ⇒ eventual collapse

 $t = 0 \quad \theta = 20^{\circ}C$

22 min θ = 720°C

16 min $\theta = 620^{\circ}C$

31 min θ = 850°C

Basic features related to assessment of mechanical response of steel structures in fire

□ Mechanical loadings under fire situation

> specific load combination

Mechanical properties of relevant materials at elevated temperatures

Stiffness and resistance varying with temperatures

Assessment methods for structural analysis in fire

- different approaches
- > application domain

Specific consideration in fire design of steel and composite structures

connections, joints, etc

Mechanical loading – combination according to Eurocode (ČSN EN 1990 and ČSN EN 1991-1-2)

$$\sum_{j \ge 1} G_{k,j} + (\Psi_{1,1} \text{ or } \Psi_{2,1}) Q_{k,1} + \sum_{i \ge 2} \Psi_{2,i} Q_{k,i}$$

G_{k,i}: characteristic values of permanent actions

- **Q**_{k,1}: characteristic leading variable action
- **Q**_{k,i}: characteristic values of accompanying variable actions
- $\psi_{1,1}$: factor for frequent value of a leading variable action
- $\psi_{2,i}$: factor for quasi-permanent values of accompaning variable actions
- → Load level: $\eta_{fi,t}$ (see presentation of WP1)

Mechanical properties of structural steel at elevated temperatures (ČSN EN 1993-1-2)

Part 3: Mechanical response

Mechanical properties of concrete at elevated temperatures (ČSN EN 1994-1-2)

Part 3: Mechanical response

Thermal expansion of steel and concrete (ČSN EN 1993-1-2 and ČSN EN 1994-1-2)

Part 3: Mechanical response

SEK

DIF

Different design approaches for mechanical response of structure in fire

Three different approaches according to Eurocodes

analysis of parts of the structure

member analysis (mainly when verifying standard fire resistance requirements) <

DIF

Different design approaches for mechanical response of structure in fire

Three types of design methods for assessing mechannical response of structures in fire

Tabulated data

- > composite structural members
- □ Simple calculation models
 - > critical temperature
 - Steel and composite structural members
- □ Advanced calculation models
 - all types of structuresnumerical models based on:
 - finite element method
 - finite difference method

<u>Classic and</u> <u>traditional</u> <u>application</u>

> Advanced and specific fire design

Application domain of different design methods under fire situation

Thermal action defined with nominal fires

Type of analysis	Tabulated data	Simple calculation models	Advanced calculation models
Member analysis	Yes ISO-834 standard fire	Yes	Yes
Analysis of a part of the structure	Not applicable	Yes (if available)	Yes
Global structural analysis	Not applicable	Not applicable	Yes

Application domain of different design methods under fire situation

Thermal action defined with natural fires

Type of analysis	Tabulated data	Simple calculation models	Advanced calculation models
Member analysis	Not applicable	Yes (if available)	Yes
Analysis of a part of the structure	Not applicable	Not applicable	Yes
Global structural analysis	Not applicable	Not applicable	Yes

Tabulated data

(steel and concrete composite members)

Tabulated data and relevant parameters (composite columns – ČSN EN 1994-1-2)

Part 3: Mechanical response

Simple calculation model (steel and composite members)

Simple calculation model (composite beam) - plastic resistance theory

Simple calculation model (composite column) - buckling curve

Load capacity: $N_{fi,Rd} = \chi(\overline{\lambda}_{\theta}) N_{fi,pl,Rd}$

SEK

 $\chi(\overline{\lambda}_{\theta}) \Leftarrow \text{strength} \text{ and rigidity of effective section +}$ column buckling length L_{fi}

Part 3: Mechanical response

Critical temperature method (only steel members and certain composite beams)

Critical temperature method

□ According to simple calculation models, for uniformly heated steel members: R_{fi,d,t} = k_{y,θ} R_{fi,d,0}

On the other hand, fire resistance should satisfy:

$$\mathbf{R}_{\mathsf{fi},\mathsf{d},\mathsf{t}} \ge \mathbf{E}_{\mathsf{fi},\mathsf{d}} = \frac{\mathbf{E}_{\mathsf{fi},\mathsf{d}}}{\mathbf{R}_{\mathsf{fi},\mathsf{d},0}} \mathbf{R}_{\mathsf{fi},\mathsf{d},0} = \mu_0 \mathbf{R}_{\mathsf{fi},\mathsf{d},0} \implies \mathbf{k}_{\mathsf{y},\theta} \ge \mu_0$$

□ In particular, when $k_{y,\theta} = \mu_0$ the corresponding temperature is defined as critical temperature θ_{cr}

In ČSN EN 1993-1-2, a simple formula is given to determine critical temperature θ_{cr}

$$\theta_{\rm cr} = 39.19 \, \ln \left[\frac{1}{0.9674 \mu_0^{3.833}} - 1 \right] + 482$$

SEK

How to apply critical temperature method

DIF

Why direct and iterative critical temperature method (case of steel column)

Advanced calculation model for any case (steel and concrete composite cellular beam)

Tested failure mode

Simulated failure mode

Part 3: Mechanical response

Fire design by global structural analysis

General rules

- necessary to use advanced calculation model
- choice of appropriate structural modeling
- > existing boundary conditions
- Ioading conditions
- > appropriate material models

- restrained condition in relation with unmodeled parts of the structure
- > analysis of results and check on failure criteria
- review of untreated features in direct analysis (consistency between numerical model and constructional details)

Fire design by global structural analysis

□Application requirement of advanced calculation models

requirement on material models

- strain composition
- kinematical material model
- strength during cooling phase

>step by step iterative solution procedure

>check of possible failure untreated in direct analysis

- rupture due to excessive steel elongation
- cracking and crushing of concrete

Requirement on material model

Strain composition

SEK

 $\varepsilon_{t} = \varepsilon_{th} + (\varepsilon_{\sigma} + \varepsilon_{c}) + \varepsilon_{r}$

 $\begin{array}{l} \epsilon_t: \mbox{ total strain} \\ \epsilon_t: \mbox{ strain due to thermal elongation} \\ \epsilon_{\sigma}: \mbox{ strain due to stress tensor} \\ \epsilon_r: \mbox{ strain due to residual stress (if appropriate)} \\ \epsilon_c: \mbox{ strain due to creep} \end{array}$

Requirement on material model

kinematical material model

Steel Concrete (isotropic material) (compression-tension anisotropic material) parallel to $\left(\frac{d\sigma}{d\epsilon}\right)(\theta_1, \epsilon = 0)$ Compression σ $- \theta_1 = \theta (t)$ $\theta_1 = \theta$ (t) $\theta_2 = \theta (t + \Delta t)$ $\theta_2 = \theta$ (t+ Δ t) parallel to $\left(\frac{d\sigma}{d\epsilon}\right)(\theta_2, \epsilon = 0)$ 3 3 Tension

Step by step iterative solution procedure

Calculation procedure must take account of temperature dependance of both stiffness and strength of the structure

Material strength during cooling phase

Choice of structural model

□ Two different structural models may be adopted

>2D composite frame model (beam elements)

- membrane effect is limited to one direction due to 1D effect slab model
- load redistribution is not possible between parallel beams

> 3D composite floor model (multi-type element)

- membrane effect over whole floor area
- load redistribution becoming possible with help of shell elements

□ More realistic to apply <u>3D composite floor model</u>

Validity of 3D composite floor model

Part 3: Mechanical response

ŠEK

DIF

Strategy of 3D composite floor modelling

Mechanical loading and boundary conditions

Part 3: Mechanical response

Mechanical response of the structure

Total deflection of the floor and check of the corresponding failure criteria

Mechanical response of the structure

Total deflection of the floor and check of the corresponding failure criteria

Mechanical response of the structure

>Check of failure criteria: elongation of reinforcing steel

Construction details shall be respected in prder to consistent with numerical models

Reinforcing bars between slab and edge columns **φ12 in S500** Maximum gap of 15 mm between beam and column and **between lower** gap flange of the beam gap ≤ 15 mm

Real building with bare steel frames based on global structural analysis

During construction

Finished

Specific consideration in fire design of steel and composite structures

Constructional details

- > Joint details (steel and composite)
- Connection between steel and concrete
 - Connectors
 - Reinforcing steel

Behaviour during cooling phase under natural fire Joint

Construction details for connection between concrete and steel (ČSN EN 1994-1-2)

□Connection between steel profile and encased concrete

National Annex to ČSN EN 1993-1-2 and ČSN EN 1994-1-2

ČSN EN 1993-1-2 (steel structures)

- Allows to choose parameters in 6 paragraphs
- The values from EN 1993-1-2 accepted without modification
- The only change is critical temperature for Class 4 sections:
 - elements loaded by bending moment:
 - element loaded in compression: $\theta_{cr} = 450 \ ^{\circ}\text{C}$
- $\theta_{cr} = 500 \ ^{\circ}\text{C}$ $\theta_{cr} = 450 \ ^{\circ}\text{C}$
- In addition: critical temperature of fire-resistant steel FRS 275 N
 - critical temperature of cold-formed elements in tension

ČSN EN 1994-1-2 (composite structures)

- Allows to choose parameters in 8 paragraphs
- The original values are accepted
- Allows to use European software without modifications

Thank you for your attention

Part 3: Mechanical response