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DESIGN PROCEDURES FOR STEEL ANDDESIGN PROCEDURES FOR STEEL AND 
COMPOSITE JOINTS IN FIRE



Definition of joint and connection

Joint

Connections



Joint classification at ambient temperature

S >kbEIb/Lb
Kb=8 (braced frames)
Kb=25 (other frames)

M
Rigid

(a) (b) (c) (d)

Semi-rigid & rigid joints
S i i idSemi-rigid

(a) (b) (c) (d) 

φ

Pinned S >0,5EIb/Lb

Simple (pinned) joints

φ



EN1993-1-2 joint design in fire

• No provision for semi-rigid behaviour.

• Annex D is “informative” only 

• Bolt strength reduction the same for:
• Shear
• BearingBearing

• No friction
• 40% reduction if slotted holes

ff f• Different strength reduction for:
• Tension

• Assumes pre-tension lostp
• Reduction factors lower than for 

structural steel

W ld t th d ti• Weld strength reduction
• Table of reductions for fillet welds
• Full Penetration butt welds

• Strength of weaker part joined.  
• Reduction factors over 700°C



Temperature distributions in joints

1. Use EC3 incremental temperature analysis on individual connection elements
2. Uniform temperature based on highest element temperature in 1p g p
3. Linearised temperature distribution for beams supporting concrete floor

• Proportions of beam bottom flange temperature
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D h

0 88 0 880.88

D < 400mm

0.88

D  400mm

D > 400mmWith continuity of reinforcement, hogging 
moments can be developed.



Connecting to concrete-encased and 
web-infilled columns

  General problem in all 
cases of composite 
columns:

• Transfer of vertical shear 
from beam to the 
concrete in the column 
when exposed steel 
parts are hot.

Gap

• Only details in EN1994-
1-2 are Fin Plates and 
Bearing Blocks, pre-Gap
welded to column.

Solutions:
Web-infilled columns

• Shear connectors (studs) 
on column face into infill.

• Single fin plate slotted Concrete-filled hollow-Single fin plate slotted 
through hollow section.

Concrete filled hollow
section columns



Connection BehaviourConnection Behaviour
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BEHAVIOUR OF STEEL AND COMPOSITEBEHAVIOUR OF STEEL AND COMPOSITE 
JOINTS IN FIRE



Moment-rotation at high temperature

• Cruciform tests from early 1990s
• Originally, joints being cooler than beams considered to be a design advantage 

for beams in fire

Moment (kNm)Moment (kNm)

for beams in fire
• Semi-empirical rules for M-φ by Al-Jabri (2004)
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Behaviour in real buildings in fire

Observations from Cardington and other 
full-scale tests, and from accidental fires 
show:
• Buckling of lower flange of connected 

beam.

show:

• Shear buckling in web of connected 
beam.

• Large beam deflections (high joint 

V ti l

g ( g j
rotations.

• Some bolt fracture.
Ambient temperature:Vertical 

Shear
Ambient temperature:  
• Connection subjected 

mainly to vertical shear.



Behaviour in real buildings in fire

Observations from Cardington and other 
full-scale tests, and from accidental fires 
show:
• Buckling of lower flange of connected 

beam.

show:

• Shear buckling in web of connected 
beam.

• Large beam deflections (high joint 

V ti l

g ( g j
rotations.

• Some bolt fracture.
Initial heating stage:Initial heating stage:Vertical 

Shear
Initial heating stage:  
• Beam attempts to 

expand – columns and 
adjacent structure resist

Initial heating stage:  
• Beam attempts to 

expand – columns and 
adjacent structure resist

Restrained 
expansion

adjacent structure resist.  
Net compression 
caused.
Th l t

adjacent structure resist.  
Net compression 
caused.
Th l tHogging 

Moment

• Thermal curvature 
generates rotation and 
hogging moments.

• Thermal curvature 
generates rotation and 
hogging moments.



Behaviour in real buildings in fire

Observations from Cardington and other 
full-scale tests, and from accidental fires 
show:
• Buckling of lower flange of connected 

beam.

show:

• Shear buckling in web of connected 
beam.

• Large beam deflections (high joint 

V ti l

g ( g j
rotations.

• Some bolt fracture.
High beam temperature:Vertical 

Shear
High beam temperature:  
• Beam loses strength in 

bending – hangs in 
catenary Joints have to

Shear buckling

Catenary 
Tension

catenary.  Joints have to 
resist catenary tension.

• Large hogging rotation 
d l ll bTension

Hogging 
Moment

caused locally by 
catenary action.

Tension field



Axial force in steel downstand of composite 
beambeam
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Fracture in cooling at Cardington

Temperature

Cooling Partial fracture• One-sided failure of partial-
depth end plates during

TENSION 
COMPRESSION

depth end plates during 
cooling phase of fire.

• Reduced stiffness retains 
th i t it f th j i t

Fo
rc

e
COMPRESSION

Heating

the integrity of the joint.

• Shear failure of bolts also 
observed in fin-plate beam-

A
xi

al
 F Axial force in 

restrained beam

eat gp
beam connections during 
cooling.



Joint failures in cooling

One-sided failures
Bolt shear 
in fin plateOne sided failures 

of partial-depth 
end plates

in fin plate

Nut threadNut thread 
stripping in 
end plate



A research study of joint forces in fire
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Measured joint forces in natural fire
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• General shape of compression curve is as usual.  
• This is plotted in terms of time, not temperature – no reversal.
• In a particular natural fire curve the fire characteristics, load levels etc. 

determine whether the beam goes into tension



Component ApproachesComponent Approaches
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COMPONENT-BASED APPROACHES TO STEELCOMPONENT-BASED APPROACHES TO STEEL 
AND COMPOSITE JOINTS IN FIRE



Principal component zones of end-plate 
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EC3-1.8 extended end-plate joint model

Column 
flange 

bending

Bolt
tension

End plate 
bending

Column 
web 

tension

g bending

Beam web 
tension

Hogging 
Moment

Beam 
flangeColumn webColumn 

b Column web 
compressionweb 

shear



The “Component”  method with axial force

• Component model deals with load combinations 
automatically, though M-φ curves change due to thrust.y g φ g

K1

K2

Kc



The “Component”  method with axial force

• Component model deals with load combinations 
automatically, though M-φ curves change due to thrust.y g φ g

F1
K1

F2
K2

Ft

Fc
Kc

M



The “Component”  method with axial force

• Component model deals with load combinations 
automatically, though M-φ curves change due to thrust.y g φ g
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Ft
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Kc



Comparison of joint element with M-φ-T
tests by Leston-Jonestests by Leston Jones 
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Component-Based Connection Element 
(Block)(Block)
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Component-based connection element: 
beam shear panelbeam shear panel 
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Component-based connection element: 
beam shear panelbeam shear panel
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Implementation of joint element in software

I K

L

I

J

K



How complex?  Tension force on end plate 
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The EndThe End


