Fire Modelling – A Structural Engineering Perspective Dr M Gillie

Standard Fire Test Defined using a furnace Test (ASTM-E-119, ISO-834, BS-476 Part 8)

Pros and Cons

Has limitations

- Not based on real fire data
- Test repeatability difficult
- No cooling phase
- Uniform heating
- Uses gas temperature "not fair"

But

- Widely used
- Can be useful for crudely comparing products

Compartment Fires

Assumptions in Swedish method

- No heat built-up in pre-flashover phase of fire
- Temperature uniform in the compartment
- Uniform heat transfer coefficient in compartment boundaries
- All combustion takes place in the compartment

Energy balance for a compartment – Swedish Method

$$Q_{\mathcal{C}} = Q_L + Q_W + Q_R$$

- Q_c = Energy released by combustion
- Q_l = Energy lost by exchange of gases
- $Q_w = \text{Energy lost through}$ compartment walls
- Q_R = Energy radiated
 - through opening

Pros and Cons

Limitations

- Crude
- Rather severe
- Implicit expressions (Eurocode parametric curves solve this)
- Uniform fire
- Hence maximum size of compartment

But

- "Not bad"
- Can be used in performance-based design

Zone Models

- More sophisticated energy balance models
- Assume uniform temperatures in each zone
- Normally computer based
- Several commercial codes available eg. Ozone, CFast
- Similar drawbacks and benefits to parametric curves

Real Fires

 Large compartment test at BRE showed travelling fire behaviour
Travel times of the order of 45 minutes within compartment 5m deep

Real Fires

Modelling Real Fires

Previous approaches fail to acknowledge that

- Fires move
- Temperatures in a compartment are not uniform
- Large compartments need to be designed
- Two possible solutions
 - CFD models
 - Other methods of simply defining fires (e.g. Rein)

CFD Modelling

Can predict huge range of phenomena
Difficult to use due to many uncertainties in input variables
Still a research method

Possible Round Robin Predictions

Simple Conceptual model

- Rein proposed a near field and far field model of temperature loading
 - Near field from direct impingement of flames
 - Far field as a result of hot gases in a compartment
 - Speed of travel of near field governed by available fuel load and oxygen supply
 - c15 minutes of near-field exposure for office loading

Defining Temperature Loading

Structure

Conclusions

- Parametric equations <u>probably</u> conservative
- Fires in large compartments will be significantly overestimated
 - Current assumptions very severe
- Better useable offer potential for
 - Better understanding of structural behaviour
 - Savings in fire protection
- Work to date of conceptual nature