COST-C26 workshop - Prague, 30-31 March 2007

Seismic vulnerability and risk assessment of urban habitat in Southern European cities

> A.J. Kappos, Professor Department of Civil Engineering, Aristotle University of Thessaloniki

The hybrid methodology for seismic vulnerability assessment

- Developed because reliable statistical data for seismic damage were quite limited and typically corresponded to a very small number of intensities
- The initial database included ≈6000 buildings from eastern part of Thessaloniki ↔ ≈50% of building stock (after 1978 earthquake), sampling density of 1:2
 - First (and so far only in Greece) with reliable data in terms of economic damage index, i.e.

repair cost / replacement cost

- Good quality data for Thessaloniki (1978) correspond to a single intensity (I ≈ 6.5)
- Analytical generation of damage data preferred to importing data from abroad (...)
- Purely analytical approaches (e.g. HAZUS) should be avoided! (typically - but not consistently - they overestimate cost of damage)
- Focus of this presentation:
 - ◆ time-history based version of the method, applied for ≈all common R/C building types
 - pushover analysis-based version for URM buildings
 - new fragility curves, based on rigorous procedure (lognormal CDFs)
 - pilot loss scenario for Thessaloniki

		Reinforced concrete structures	Height class	Number of storeys	Height (m)	Code Level
	RC1	Concrete moment frames	Low-rise Mid-rise High-rise	2 4 9	7.5 13.5 28.5	RD'59, NEAK [*]
Model building types and design levels for R/C building	RC3 3.1 3.2	Concrete frames with unreinforced masonry infill walls Regularly infilled frames Irregularly frames (pilotis)	Low-rise Mid-rise High-rise Low-rise Mid-rise High-rise	2 4 9 2 4 9	7.5 13.5 28.5 7.5 13.5 28.5	RD'59, NEAK [*] RD'59, NEAK [*]
analysis	RC4 4.1 4.2	RC Dual systems (RC frames and walls) Bare systems Regularly infilled dual systems	Low-rise Mid-rise High-rise Low-rise Mid-rise High-rise	2 4 9 2 4 9	7.5 13.5 28.5 7.5 13.5 28.5	RD'59, NEAK RD'59
	4.3	Irregularly infilled dual systems (pilotis)	Low-rise Mid-rise High-rise	2 4 9	7.5 13.5 28.5	NEAK

Examples of R/C structures analysed

0

24.

x 3.0

▶-6.0*→*-6.0*→*-6.0*→*

Typical dual structures designed to old codes

direction of interest

,30/30	25/30	25/70	30/20	30/30	25/70	30/25	20/600 25/80
30/30	25/30	25/70	30/25	30/30	25/70	30/25	25/80
30/30	25/30	25/70	30/25	30/30	25/70	30/25	25/80
,35/35	30/35	25/70	35/30	35/45	25/70	35/30	25/80
,35/35	30/35	25/70	35/30	35/45	25/70	35/30	25/80
,35/35	35/45	25/70	45/35	40/55	25/70	45/35	25/80
,35/35	35/45	25/70	45/35	40/55	25/70	45/35	25/80
40/40	40/55	25/70	55/40	45/60	25/70	55/40	25/80
40/40	40/55	25/70	55/40	45/60	25/70	55/40	25/80

-6.0 - -7.0 - -7.0 -

Examples of R/C structures analysed (contnd.)

Typical frame structures designed to old codes

20/70

Examples of R/C structures analysed (contnd.)

<u>Typical structures designed to modern codes</u> (NEAK/EAK2000)

- dual structures have the same configuration as those designed to old codes
- frame structures are slightly different, i.e. more realistic (3 spans instead of two)

(20/50)	3Φ12α 3Φ14κ	5Φ12α 3Φ14κ	5Φ12α 3Φ12κ		<u> </u>	(20/4,0)	2Φ12α 2Φ12κ	4Φ12α 2Φ12κ	4Φ12α 2Φ12κ		
(25/50)	Φ8/12 4Φ12α 4Φ12κ	Φ8/12 8Φ12α 4Φ12κ	Φ8/12 8Φ12α 4Φ12κ	(35/35) 4Ф18+4Ф14 Ф8/10	(30/30) 8Φ14 Φ8/10	(20/45)	Φ8/12 3Φ12α 3Φ12κ	Φ8/12 6Φ12α 3Φ12κ	Φ8/12 6Φ12α 3Φ12κ	(35/35) 4Ф18+4Ф14 Ф8/10	(30/30) 8Φ14 Φ8/10
	Φ8/12	Φ8/12	Φ8/12	(40/40) 4Ф25+4Ф16 Ф10/10	(30/30) 4Ф20+4Ф14 Ф8/10		Φ8/12	Φ8/12	Φ8/12	(40/40) 8Φ25 Φ10/10	(30/30) 4Ф18+4Ф14 Ф8/10

					Q	0					
(25/50)	4Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ			<u>(20/5</u> 0)	3Φ12α 3Φ12κ	6Φ12α 3Φ12κ	6Φ12α 3Φ12κ		
	Ф8/12	Φ8/12	Φ8/12	(40/40) 8Ф20	(30/30) 4Ф20+4Ф16	0	Φ8/12	Φ8/12	Ф8/12	(40/40) 4Ф25+4Ф20	(30/30) 4Φ18+4Φ14
(25/60)	4Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ	Φ8/10	Ф8/10 — — — — —	<u>(20/5</u> 5)	3Φ12α 3Φ12κ	6Φ12α 3Φ12κ	6Φ12α 3Φ12κ	Φ10/10	Φ8/10
	Ф8/12	Φ8/12	Φ8/12	(45/45) 4Ф25+4Ф20	(35/35) 4Ф25+4Ф16	Ŭ	Φ8/12	Φ8/12	Ф8/12	(45/45) 4Ф20+4Ф18	(30/30) 4Φ16+4Φ14
(25/60)	4Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ	Φ10/10	Ф10/10 — — — — —	<u>(25/6</u> 0)	4Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ	Φ8/10	Φ8/10
	Φ8/12	Φ8/12	Φ8/12	(45/45) 4Φ25+4Φ20 Φ10/10	(35/35) 4Φ25+4Φ16 Φ10/10	Ŭ	Φ8/12	Φ8/12	Φ8/12	(45/45) 8Φ25 Φ10/10	(35/35) 4Ф20+4Ф14 Ф8/10

					-p	0					7
(20/50)	3Φ12α 3Φ14κ	6Φ12α 3Φ14κ	6Φ12α 3Φ12κ		þ	(20/40)	3Φ12α 2Φ12κ	4Φ12α 2Φ12κ	4Φ12α 2Φ12κ		
	Φ8/12	Φ8/12	Φ8/12	(35/35) 4Ф25+4Ф16 Ф10/10	(30/30) 4Ф20+4Ф18 Ф8/10 	0	Φ8/12	Φ8/12	Φ8/12	(35/35) 4Ф20+4Ф14 Ф8/10	(30/30) 4Φ16+4Φ14 Φ8/10
(25/55)	5Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ		p	<u>(25/5</u> 0)	4Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ		_
	Φ8/12	Φ8/12	Φ8/12	(40/40) 4Φ25+4Φ18 Φ10/10	(35/35) 4Ф25+4Ф16 Ф10/10 	0	Φ8/12	Φ8/12	Φ8/12	(40/40) 4Φ25+4Φ16 Φ10/10	(30/30) 4Φ18+4Φ14 Φ8/10
(25/60)	6Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ		0	(2 <u>5/6</u> 0)	4Φ12α 4Φ12κ	8Φ12α 4Φ12κ	8Φ12α 4Φ12κ		_
	Φ8/12	Φ8/12	Φ8/12	(45/45) 8Φ25 Φ10/10	(40/40) 8Ф20 Ф8/10	0	Φ8/12	Φ8/12	Φ8/12	(40/40) 4Φ25+4Φ18 Φ10/10	(30/30) 4Ф18+4Ф14 Ф10/10
	6 0 12a	8 0 12a	80120			<i>\</i>	50120	8 0 12a	8 0 12a		
(25/60)	4Φ12κ	4Φ12κ	4Φ14κ			(2 <u>5/6</u> 0)	4Ф12к	4Φ12κ	4Φ14κ		
	Φ8/12	Φ8/12	Φ8/12	(45/45) 8Ф25	(40/40) 4Φ25+4Φ16	0	Φ8/12	Φ8/12	Ф8/12	(45/45) 4Ф25+4Ф18	(35/35) 4Ф18+4Ф14
(25/65)	5Φ14α 4Φ14κ	7Φ14α 4Φ14κ	7Φ14α 4Φ14κ	Φ12/10	Φ10/10	(25/65)	4Φ14α 3Φ14κ	7Φ14α 3Φ14κ	7Φ14α 4Φ14κ	Φ12/10	Φ10/10
	Ф8/14	Ф8/14	Ф8/14		p	=_0	Ф8/14	Ф8/14	Ф8/14		
				(50/50) 4Ф25+8Ф18 Ф10/10	(45/45) 12Ф20+4Ф14 Ф10/10					(50/50) 4Φ20+8Φ18 Φ10/10	(40/40) 4Ф25+4Ф16 Ф10/10

Modelling of R/C members: Point hinge approach

moment rotation curve for a beam (SAP 2000)

Modelling of infills: Strut model

$$E_{s} \cdot A_{s} = \frac{G_{W} \cdot A_{W}}{\cos^{2} a \cdot \sin a}$$

multilinear version of hysteresis law based on test results (brick masonry)
no significant axial load
masonry f_w=1.5 MPa

irregularly infilled (RC4.3)

regularly

infilled

(RC4.2)

0. 24 Ш 0. \sim × ω -6.0 - 6.00 24 Ш 0 ŝ × ω 7//// 7//// 7//// 7//// $\underbrace{ \begin{array}{c} \leftarrow 6.0 \\ \hline \end{array} } 6.0 \\ \hline \end{array} \\ 6.0 \\ \hline \end{array}$

9-Storey dual R/C building with masonry infills

Records used and scaling procedure

8 natural records

- 2 from the 14/8/03 Lefkada earthquake
- 2 from the 15/6/95 Aegion earthquake
- 4 from the 7/9/99 Athens earthquake
- 8 synthetic records

4 from the site-dependent records estimated within the microzonation study of Volos (AUTh Geotechnical Earthquake Engineering Group)
4 records derived for two locations in Thessaloniki based on two

- different natural records (Kozani '95, Umbro-Marchigiano aftershock)
- Fairly representative set of records
- Different site conditions taken into account

Response spectra of selected records

Method for correlating structural damage index to loss index (Kappos et al., 1998) \rightarrow crucial stage of the hybrid approach!

model for R/C members

 $G=G_{c} + G_{p} = 0.25D_{cg} + 0.08D_{pg}$ $G=G_{c} + G_{p} = 0.30D_{cq} + 0.08D_{pq}$

for low/medium-rise buildings (1-6 storeys) for high-rise buildings (≥7 storeys)

cost models based on greek data

used to translate structural damage predicted by inelastic time-history analysis to loss (repair cost / replacement cost)

model for masonry infills

Hybrid method – Analysis stage

<u>Correlation with intensity of motions for which</u> <u>damage data exist</u>

- Available damage statistics from past earthquakes are typically available in terms of macroseismic intensity (I).
- To correlate intensity with the PGA of the records used in time-history analysis the Koliopoulos et al. (1998) relationship was used ln(PGA)=0.74I+0.03, (I>9)

l	PGA (g)
6	0.089
7	0.187
8	0.391
9	0.820

X

16 records

Additional analyses carried out for higher intensities (PGA equal to 1.5, 2 kai 4 times that corresponding to I=9) to obtain complete curves for welldetailed structures

6048 timehistory analyses

Calculated loss indices

4-storey, regularly infilled dual system, designed to old codes ('Low-code')

=6

|=9

8=1

Calculated loss indices (contnd.)

RC4.3HL: 9-storey dual system with pilotis, designed to old codes ('Low-code')

|=6

|=7

|=9

|=8

Loss index accumulation (L vs. PGA)

. • •

			KC4 (u	ual) LOW		liuciure	5			
		Low-rise		Μ	edium-ris	se	High-rise			
PGA	bare	infilled	pilotis	bare	infilled	pilotis	bare	infilled	pilotis	
0.09	1.43%	0.28%	0.54%	3.19%	0.47%	0.55%	13.28%	0.64%	0.49%	
0.19	5.39%	2.52%	2.05%	11.70%	2.64%	2.19%	22.39%	9.49%	8.93%	
0.39	31.59%	8.69%	6.86%	31.61%	7.37%	16.72%	70.37%	58.59%	47.48%	
0.82	77.72%	62.32%	66.34%	77.96%	40.64%	70.49%	94.83%	83.00%	77.54%	
1.23	83.66%	100.00%	88.92%	94.62%	63.71%	88.14%	100.00%	94.62%	94.44%	

 \rightarrow the L vs. PGA relationship is used to estimate median values of fragility curves

Loss index accumulation (L vs. PGA) – contnd.

RC1 (frame) and RC3 (infilled frame) Low Code structures

		Low			Medium		High			
PGA	bare	infilled	pilotis	bare	infilled	pilotis	bare	infilled	pilotis	
0.09	3.51%	0.19%	0.84%	2.14%	0.51%	6.69%	1.65%	0.78%	0.23%	
0.19	18.32%	2.35%	14.58%	17.35%	2.30%	31.99%	17.30%	5.01%	7.78%	
0.39	77.22%	35.40%	75.67%	70.92%	52.24%	57.32%	55.14%	58.66%	39.64%	
0.82	89.05%	62.28%	93.98%	88.99%	62.28%	100.00%	89.58%	82.85%	81.99%	
1.23	100.00%	89.44%	100.00%	100.00%	83.94%	100.00%	100.00%	89.90%	94.08%	

Loss index accumulation (L vs. PGA) – contnd.

		Low				Medium		High			
PGA	bare infilled pilotis		bare infilled pilotis		pilotis	bare	infilled	pilotis			
0.09	0.0	1%	0.01%	0.01%	0.44%	0.07%	0.14%	0.62%	0.52%	0.42%	
0.19	0.2	2%	0.11%	0.18%	3.12%	1.34%	1.31%	2.95%	2.89%	2.37%	
0.39	2.7	1%	0.91%	1.16%	9.67%	7.42%	6.64%	8.50%	8.97%	7.13%	
0.82	12.8	80%	11.76%	9.69%	30.55%	15.82%	26.39%	15.91%	16.87%	25.23%	
1.23	16.4	5%	17.25%	13.36%	53.26%	39.49%	48.57%	29.72%	26.05%	49.08%	
1.64	48.8	2%	24.24%	17.27%	74.40%	70.19%	59.67%	55.65%	65.43%	59.64%	
3.28	90.4	0%	85.40%	94.98%	100.00%	90.48%	90.12%	95.37%	91.01%	90.50%	

RC4 (Dual) High-Code structures

Loss index accumulation (L vs. PGA) – contnd.

RC1 (frame) and RC3 (infilled frame) High Code structures

		Low			Medium		High			
PGA	bare	infilled	pilotis	bare	infilled	pilotis	bare	infilled	pilotis	
0.09	1.98%	0.00%	0.00%	1.48%	0.05%	0.12%	0.96%	0.42%	0.13%	
0.19	5.71%	0.94%	0.58%	4.26%	1.15%	1.26%	3.77%	2.92%	1.08%	
0.39	10.82%	3.98%	3.20%	8.40%	6.17%	3.67%	9.53%	9.93%	3.05%	
0.82	35.99%	10.87%	19.54%	12.91%	13.68%	29.00%	16.39%	22.68%	34.48%	
1.23	4 <mark>7.79%</mark>	16.36%	43.31%	20.36%	18.66%	41.27%	29.13%	26.73%	52.77%	
1.64	6 <mark>8.94%</mark>	20.16%	66.09%	26.70%	22.06%	64.73%	40.89%	55.78%	82.24%	
3.28	9 <mark>5.08%</mark>	53.67%	83.43%	27.21%	80.42%	88.39%	86.03%	68.12%	100.00%	

Fragility curves

derived based on hybrid approach

■ for six (5+1) damage states (DS0 to DS5)

Damage State	Damage state label	Range of damage factor	Central damage factor (%)
DS0	None	0	0
DS1	Slight	0-1	0.5
DS2	Moderate	1-10	5
DS3	Substantial to heavy	10-30	20
DS4	Very heavy	30-60	45
DS5	Collapse	60-100	80

lognormal distribution assumed

$$P[ds \ge ds_i / PGA] = \Phi[\frac{1}{\beta_{ds_i}} \ln(\frac{PGA}{\overline{PGA}, ds_i})]$$

Damage-state medians

from analytical L – PGA relationship, scaled based on statistical data available

Dual Infilled High Rise- Low Code level

Damage-state variability

- Uncertainty associated with *seismic demand*: estimated from the variability in the results of inelastic dynamic analyses carried out for a total of 16 motions at each level of PGA considered
 Variability in *capacity* for low code buildings β=0.3 assumed (Hazus)
 for high code β=0.25 assumed (Hazus)
 Uncertainty in the *definition of damage state*: for all
 - building types and all damage states, $\beta=0.4$ (Hazus)
- Total variability $\beta \approx (\beta_D + \beta_C + \beta_{ds})^{1/2}$

Estimated fragility curve parameters, Low-Code Design

M.	Slight		Moderate		Substantial	to heavy	V 11.0000	(Aparr (Jay	Complete		
BT	Median	Beta	Median	Beta	Median	Beta	Median	Beta	Median	Beta	
RC1L	0.0058	0.7328	0.0583	0.7328	0.1265	0.7328	0.1948	0.7328	0.2507	0.7328	
RC1M	0.0065	0.6512	0.0653	0.6512	0.1155	0.6512	0.1658	0.6512	0.2161	0.6512	
RC1H	0.0304	0.6292	0.1139	0.6292	0.2147	0.6292	0.3667	0.6292	0.8356	0.6292	
RC3.1L	0.0908	0.7328	0.1844	0.7328	0.2290	0.7328	0.3001	0.7328	0.4129	0.7328	
RC3.1M	0.0274	0.6512	0.1465	0.6512	0.2029	0.6512	0.2349	0.6512	0.2798	0.6512	
RC3.1H	0.0643	0.6292	0.1890	0.6292	0.2533	0.6292	0.3605	0.6292	1.2344	0.6292	
RC3.2L	0.0243	0.7328	0.0994	0.7328	0.1483	0.7328	0.2071	0.7328	0.2609	0.7328	
RC3.2M	0.0021	0.6512	0.0208	0.6512	0.0834	0.6512	0.1176	0.6512	0.1599	0.6512	
RC3.2H	0.0934	0.6292	0.1588	0.6292	0.2811	0.6292	0.5023	0.6292	1.0908	0.6292	
RC4L	0.0265	0.7647	0.1585	0.7647	0.2773	0.7647	0.4531	0.7647	0.7296	0.7647	
RC4M	0.0161	0.7005	0.1187	0.7005	0.3040	0.7005	0.5799	0.7005	1.1769	0.7005	
RC4H	0.0094	0.7004	0.0974	0.7004	0.3309	0.7004	1.9462	0.7004	4.6052	0.7004	
RC4.1L	0.0954	0.7647	0.2441	0.7647	0.4576	0.7647	0.6275	0.7647	0.8816	0.7647	
RC4.1M	0.0940	0.7005	0.3223	0.7005	0.5941	0.7005	1.0221	0.7005	1.7409	0.7005	
RC4.1H	0.0975	0.7004	0.2056	0.7004	0.3813	0.7004	2.3550	0.7004	5.8269	0.7004	
RC4.2L	0.0701	0.7647	0.2803	0.7647	0.4643	0.7647	0.6174	0.7647	0.8500	0.7647	
RC4.2M	0.0905	0.7005	0.2372	0.7005	0.4422	0.7005	0.6726	0.7005	1.3305	0.7005	
RC4.2H	0.0996	0.7004	0.2138	0.7004	0.5159	0.7004	2.0080	0.7004	4.3955	0.7004	

Estimated fragility curve parameters, High-Code Design

BTM	Slight		Moderate		Substantial to heavy		Very Heavy		Complete	
	Median	Beta	Median	Beta	Median	Beta	Median	Beta	Median	Beta
RC1L	0.0103	0.7138	0.0973	0.7138	0.3258	0.7138	0.5591	0.7138	0.8468	0.7138
RC1M	0.0094	0.6297	0.0921	0.6297	0.2856	0.6297	0.8847	0.6297	1.5334	0.6297
RC1H	0.0520	0.6070	0.2525	0.6070	1.0164	0.6070	1.8682	0.6070	2.7928	0.6070
RC3.1L	0.1129	0.7138	0.2781	0.7138	0.7154	0.7138	1.6561	0.7138	2.1649	0.7138
RC3.1M	0.0984	0.6297	0.2037	0.6297	0.3966	0.6297	0.8536	0.6297	1.6941	0.6297
RC3.1H	0.0945	0.6070	0.2655	0.6070	0.8136	0.6070	1.5668	0.6070	4.5780	0.6070
RC3.2L	0.1275	0.7138	0.3205	0.7138	0.5483	0.7138	0.8395	0.7138	1.1169	0.7138
RC3.2M	0.0918	0.6297	0.2125	0.6297	0.4350	0.6297	0.5675	0.6297	0.7531	0.6297
RC3.2H	0.1332	0.6070	0.4263	0.6070	0.6564	0.6070	1.1815	0.6070	2.1018	0.6070
RC4L	0.2034	0.7465	0.4565	0.7465	1.2368	0.7465	1.5059	0.7465	2.1288	0.7465
RC4M	0.0941	0.6806	0.2697	0.6806	0.6672	0.6806	1.2074	0.6806	2.3881	0.6806
RC4H	0.1221	0.6805	0.7127	0.6805	1.8654	0.6805	3.3640	0.6805	5.4622	0.6805
RC4.1L	0.2673	0.7465	0.5232	0.7465	1.2112	0.7465	1.8826	0.7465	2.3983	0.7465
RC4.1M	0.1279	0.6806	0.3359	0.6806	0.9463	0.6806	1.3971	0.6806	2.8041	0.6806
RC4.1H	0.1256	0.6805	0.6674	0.6805	1.6634	0.6805	3.7579	0.6805	6.6903	0.6805
RC4.2L	0.2377	0.7465	0.5464	0.7465	1.6118	0.7465	1.9261	0.7465	2.3319	0.7465
RC4.2M	0.1257	0.6806	0.3582	0.6806	0.7489	0.6806	1.3571	0.6806	2.7817	0.6806
RC4.2H	0.1385	0.6805	0.5553	0.6805	1.8107	0.6805	3.6344	0.6805	6.1875	0.6805

fragility curves for RC3.1M (medium-rise infilled frame)

high code

fragility curves for RC4M (medium-rise dual system)

high code

Development of special-purpose software (HyFragC) for processing of results & derivation of fragilty curves

large no. of analyses
large no. of structural systems
sensitivity analyes at various stages

need to develop specialpurpose software

Implementation of hybrid procedure: Sensitivity analysis (different interpretation of statistical data)

low-rise dual structures, regularly-infilled, designed to Low code (RD'59)

medium-rise dual structures with pilotis, designed to Medium code (1984 Suppl.)

high-rise frame structures, regularlyinfilled, designed to High code (NEAK/EAK2000)

Implementation of hybrid procedure – a complete set of fragilty curves for R/C structures was derived

S_d-based fragilty curves – Methodology used

Pushover curve (bilinear form); RC1 - 1959 code

4_storey frames 95 Code

 4 storey (High code) frame building's capacity curves for (from top to bottom) infilled, pilotis and bare building for infilled buildings ⇒ 2 bilinear models needed!

Capacity curves old buildings ('Low Code')

	_	Yield Cap	acity Poi	<u>nt</u>	Ultimate Capacity Point				
Building Type	Sdy	S _{dy}	Say	Say	S _{du}	S _{du}	Sau	S_{au}	
	(cm)	(Hazus)	(g)	(Hazus)	<u>(cm)</u>	(Hazus)	<u>(g)</u>	(Hazus)	
RC1L (C1L)	2.320	0.250	0.192	0.062	9.580	3.730	0.209	0.187	
RC1M (C1M)	4.270	0.740	0.170	0.052	10.770	7.320	0.175	0.156	
RC1H (C1H)	5.760	1.270	0.124	0.024	14.830	9.580	0.144	0.073	
RC3.1L (C3L)	0.460	0.300	0.840	0.100	1.725	3.430	1.191	0.225	
	0.416		0.430		4.373		0.525		
RC3.1M (C3M)	0.850	0.660	0.423	0.083	2.625	4.950	0.635	0.188	
	0.841		0.203		6.443		0.357		
RC3.1H (C3H)	2.330	1.880	0.280	0.063	6.305	10.490	0.397	0.143	
	2.273		0.125		10.032		0.256		
RC3.2L	1.790	-	0.200	-	8.475	-	0.223	-	
	1.761		0.200		8.545		0.221		
RC3.2M	1.990	-	0.204	-	7.575	-	0.230	-	
	2.288		0.204		8.077		0.222		
RC3.2H	2.930	-	0.243	-	7.280	-	0.293	-	
	2.796		0.187		9.330		0.227		
RC4.1L (C2L)	1.080	0.300	0.385	0.100	5.050	3.810	0.466	0.250	
RC4.1M (C2M)	1.460	0.660	0.182	0.083	8.250	5.490	0.253	0.208	
RC4.1H (C2H)	3.860	1.880	0.204	0.063	15.600	11.660	0.260	0.159	
RC4.2L	0.320	-	0.584	-	2.475	-	0.877	-	
	0.301		0.446		3.054		0.598		
RC4.2M	0.820	-	0.331	-	4.875	-	0.451	-	
	0.983		0.271		5.869		0.309		
RC4.2H	2.810	-	0.361	-	9.880	-	0.411	-	
D C L AI	2.774		0.305		9.460		0.339		
RC4.3L	0.390	-	0.472	-	3.225	-	0.623	-	
	0.258		0.343		3.047		0.517		
RC4.3M	0.890	-	0.296	-	4.800	-	0.374	-	
DC4 211	0.863		0.225		5.432		0.302		
RC4.3H	2.500	-	0.309	-	8.125	-	0.370	-	
	2.565		0.257		9.958		0.294		
Capacity curves -'Moderate Code'

	Yield Capacity Point				Ultimate Capacity Point				
Building Type	Sdy	Sdy	Sav	Sau	Sdu	Sdu	Sau	Sau	
	∼uy (cm)	(Hazus)	~ay (g)	∼ ^{ay} (Hazus)	(cm)	(Hazus)	~au (g)	(Hazus)	
RC1L (C1L)	2 166	0.508	0.571	0 125	14 363	8 941	0.577	0 375	
RC1M (C1M)	2.947	1.473	0.358	0.104	15.139	17.551	0.361	0.312	
RC1H (C1H)	5.041	2.565	0.209	0.049	16.992	22.987	0.224	0.147	
RC3.1L (C3L)	0.486	-	1.336	-	2.713	_	1.550	_	
	0.504		0.790		4.897		0.922		
RC3.1M (C3M)	0.857	-	0.656	-	3.564	-	0.823	-	
~ /	0.863		0.406		6.195		0.548		
RC3.1H (C3H)	1.961	-	0.395	-	6.906	-	0.479	-	
	2.070		0.284		12.871		0.341		
RC3.2L	1.467	-	0.616	-	12.299	-	0.623	-	
	1.536		0.609		13.085		0.615		
RC3.2M	1.531	-	0.404	-	11.142	-	0.411	-	
	1.807		0.402		11.764		0.408		
RC3.2H	2.296	-	0.309	-	9.246	-	0.330	-	
	2.766		0.290		12.461		0.305		
RC4.1L (C2L)	0.413	0.610	0.739	0.200	5.450	9.144	0.861	0.500	
RC4.1M (C2M)	1.116	1.321	0.329	0.167	12.286	13.183	0.374	0.417	
RC4.1H (C2H)	4.266	3.734	0.396	0.127	21.997	27.991	0.523	0.317	
RC4.2L	0.401	-	1.103	-	4.557	-	1.227	-	
	0.353		0.804		6.649		0.928		
RC4.2M	0.978	-	0.529	-	8.234	-	0.595	-	
	0.979		0.420		8.270		0.432		
RC4.2H	2.333	-	0.500	-	12.258	-	0.646	-	
	2.624		0.416		12.758		0.560		
RC4.3L	0.364	-	0.836	-	6.270	-	0.976	-	
	0.366		0.759		7.026		0.889		
RC4.3M	0.952	-	0.473	-	8.481	-	0.496	-	
	0.859		0.352		11.910		0.415		
RC4.3H	2.172	-	0.453	-	13.322	-	0.622	-	
	2.511		0.392		16.772		0.540		

S_d-based fragilty curves – Methodology used

- At the present stage of development the PGA-based fragility curves were used as a basis
- Two typical 'demand spectra' were considered
 - > average spectrum from Thessaloniki microzonation study (Pitilakiws et al.)
 - Seismic Code (EAK2000-Annex A) spectrum
- The capacity spectrum method (C.S.M.) was adopted

• Median values for each damage level from the fragility curves of the 1^{st} apporatoch (PGA-based) were transformed into S_d terms (from T_o and the selected spectra)

To carry out 'automatically' the bilinearization of

- pushover and capacity curves
- of moment curvature curves

>an appropriate software (BILIN) was developed at AUTh-LRCMS, both in a stand-alone (.exe) form and as an MS Excel function

Methodology for deriving fragility curves for URM buildings

Objective: to derive fragility curves for unreinforced masonry (URM) buildings (stone masonry, brick masonry)

The methodology starts with inelastic static (pushover) analysis of typical URM building types

* Buildings with different height (1-3 storeys) and different quality of masonry (f_{wm} =1.5÷3.0MPa) are considered

0.88 0.98 0.98 0.98 0.98 0.98 0.98 0.98				
2.5 2.0	$\sim \frac{2}{3.0}$		2.65 1.65	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$

Methodology for deriving fragility curves for URM buildings

 Pushover curves for typical structures are first derived and then converted to capacity 'spectra' S_a-S_d

The capacity and demand spectra approach is then utilised

 On the 'hybrid' side, statistical data from the Thessaloniki, Aegion, and Pyrgos earthquakes are taken into account

Estimation of damage in terms of displacements

• The estimation of parameter S_{mi} is made using the capacity and demand spectra approach (for increasing levels of earthquake intensity)

Methodology for deriving fragility curves for URM buildings

 Damage levels are defined with respect to critical points along the pushover (or capacity) curve of the building

Damage State	Damage State label	Range of loss index (%)	Spectral displacement (related to δ_{target})			
D0	None	0	δt<0.7δy			
D1	Slight	0 ÷ 5	0.7δy<δt<0.7δy+5(0.9δu-0.7δy)/100			
D2	Moderate	5 ÷ 20	0.7δy+5(0.9δu-0.7δy)/100<δt< 0.7δy+20(0.9δu-0.7δy)/100			
D3	Substantial to heavy	20 ÷ 50	0.7δy+20(0.9δu-0.7δy)/100 <δt<0.9δu			
D4	Very heavy	50 ÷ 95	0.9õu<õt<1.5õu			
D5	Collapse	>95	1.5δu<δt			

Economic loss index in URM buildings, as a function of roof displacement

Vulnerability (fragility) curves for URM buildings

Vulnerability assessment and loss scenario for Thessaloniki buildings

A.J. Kappos (coordinator), Ch. Panagiotopoulos, G. Panagopoulos

Inventory of buildings

Global analysis of the building stock in the municipality of Thessaloniki

- 1991 ESYE data
- Detailed data for a total of 5740 buildings struck by the 1978 earthquake from Penelis et al. project (1986)
- "block-by-block" analysis of a selected part of the city
 - update of the detailed data using a new in-situ collection of data for a number of blocks (50)
 - in-situ work carried out by the members of the AUTh Structural Group covering a selected sample (>10%) of the 1984-86 survey that belong to the municipality of Thessaloniki

Inventory of buildings

 Data collected within another (nationally funded) programme for

> all hospital (red dots) buildings (a total of 330) in the major area
> a percentage of secondary school (green dots) buildings in the centre of Thessaloniki (a total of 170)

Building type distribution

General composition of building blocks in the study area

- R/C buildings designed to 'old' (pre-1984) seismic codes
- R/C buildings designed to `new' (post-1985) seismic codes
- URM buildings

Building type distribution

Building type distribution for the Municipality of Thessaloniki (RISK-UE typology)

Methodology for building damage assessment

Fragility curves for all building types were developed using a combination of analysis and statistical data, the so-called 'hybrid' approach (Kappos et al. 1998, 2001)
 Combination of the DCE) were used in order to better cuit to be the DCE.

6 damage states (DS0 to DS5) were used in order to better suit the needs of WP7 and obtain a more complete scenario

Damage State	Damage state label	Range of loss index- R/C	Central index (%)	Range of loss index - URM	Central index (%)
DS0	None	0	0	0	0
DS1	Slight	0-1	0.5	0-4	2
DS2	Moderate	1-10	5	4-20	12
DS3	Substantial to heavy	10-30	20	20-40	30
DS4	Very heavy	30-60	45	40-70	55
DS5	Collapse	60-100	80	70-100	85

<u>Methodology for building damage assessment</u>

Typical fragility curves for R/C buildings

Typical fragility curves for URM buildings

"Idealized" damage distribution for uniform intensities

"Idealized" damage distribution for uniform intensities

<u>WP2 scenario for</u> <u>Thessaloniki</u>

Map of area for which vulnerability assessment was carried out

Number of buildings suffering damage states DS0 to DS5 in each building block for the earthquake scenario developed in WP2

Total number of buildings in each damage state

Damage	Number of	Percentage
State	buildings	(%)
DS0	654	3.41%
DS1	6813	35.53%
DS2	6430	33.52%
DS3	3002	15.65%
DS4	1201	6.26%
DS5	1079	5.63%

Damage distribution (% of buildings) for all building types (Municipality of Thessaloniki)

Predicted tagging of buildings
Green: DS0 & DS1
Yellow: DS2 & DS3
Red: DS4 & DS5

Total number of buildings in each damage label

Damage	Number of	Percentage
Label	buildings	(%)
Green	7467	38.93%
Yellow	9432	49.18%
Red	2280	11.89%

Expected distribution of damage due to the scenario earthquake

 $\frac{\Sigma(MDF_i \cdot V_i)}{V_{tot}}$

Repair cost distribution

An average replacement cost of €700 /m² was assumed

Cost=Σ[(Vi•MDFi]• 700 in each
 block

 A very heavy cost of over 460 million € is predicted for the area studied (the figure should be multiplied by about 4 for the entire municipality)

a couple of notes of caution appear in order:

- All evidence from the present study clearly indicates that the scenario earthquake estimated within WP02 is an event significantly stronger than the 'historical' (1978) earthquake
- On the vulnerability assessment side, it has to be pointed out that the methodology applied was cast into PGA terms (pros & cons...)
- Perhaps, a 'purely Level II' approach, based on spectral displacements would have resulted in lower predictions of damage degree, at least for some types of structures ...

Vulnerability assessment of monumental buildings

Gr. G. Penelis, A. J. Kappos (coord.), K.C. Stylianidis, V.K. Papanikolaou

Inventory of buildings

All registered (preserved) buildings have been included in a GIS based database

All monumental buildings have been assigned a vulnerability index following the vulnerability assessment methodology for monumental buildings developed within the RISK UE project (WP5)

GIS Data	base
Monument Form - Monument 303 Monument Form - Monument 30 Data Picture Drawing	
New Monument	Open 🕞 Save 🗮 🎇 💰 Password : 🥌 Export to ArcView

GIS Database

Vulnerability index

The index is calculated based on data from a survey form

TYPOLOGY	Vi-	Vi*	Vi+	β
Palace/Buildings	0.496	0.616	0.956	2.3
Monasteries	0.616	0.736	1.076	2.3
Castles	0.356	0.456	0.766	2.3
Churches	0.77	0.89	1.26	3
Chapels/Oratories	0.65	0.77	1.14	3
Mosques	0.67	0.73	0.94	2.65
Theatres	0.616	0.736	1.086	2.65
Towers	0.636	0.776	1.136	2.3
Bridges	0.216	0.296	0.566	2.3
Walls	0.396	0.496	0.746	2.3
Triumphal Arches	0.376	0.456	0.706	2.3
Obelisks	0.396	0.456	0.746	1.95
Statues/Fountains	0.236	0.296	0.606	1.95

		\ <i>I</i> :		
General parameters		VI		
STATE OF MAINTENANCE	worst	0.04		
	medium	0		
	good	-0.04		
DAMAGE LEVEL	severe	0.04		
	light	0.02		
	nihil	0		
ARCHITECTURAL TRANSFORMATIONS	yes	0.02		
	no	0		
RECENT INTERVENTIONS	yes	-0.02		
	no	0.02		
MASONRY QUALITY	yes	0.05		
	no	0		
SITE MORPHOLOGY	ridge	0.04		
	sloping	0.02		
	flat ground	0		
PLAN REGULARITY	it depends			
SECTION REGULARITY	it depends			
POSITION	it depe	ends		

CHURCHES		
General parameters		Vi
NAVE TYPOLOGY	central nave	-0.02
	one nave	0
	three naves	0.02
SAILING FACADE/RAISED ELEMENTS	yes	0.04
	no	0
POSITION	included	-0.02
	additions	0.02
	isolated	0
Specific parameters		Vi
DOMES/VAULTS	yes	0.04
	no	0
LATERAL WALL HEIGHT	<6 m	-0.02
	6 <x<12 m<="" td=""><td>0</td></x<12>	0
	>12	0.04

NAME	TYPOLO GY	AGE	KIND OF USE	FREQUEN CY	CROW D	MAINTEN ANCE	DAMAGE LEVEL	Arch TRAN	REC. INTER	MAS QUAL	SITE	PLAN REG.	POSITI ON	Iv	
The Customs	Palaces - Vilas	1910	Offices in the main building and warehouse s in the rest buildings	Daily	yes	good	severe	no	yes	yes	flat ground	yes	isolated	0.576	examples
loniki and Laiki Bank	Palaces - Vilas	1929	Bank	Daily	yes	medium	nihil	no	no	yes	flat ground	yes	corner	0.656	<u> </u>
Vlatadon Monastery	Monasteri es	1351	0	occasional	yes	good	medium	no	yes	yes	ridge	yes	isolated	0.676	- C
The Rotunda	Churches	300	0	Occasional	yes	good	severe	yes	yes	good	flat ground	central	isolated	0.97	
The Church of Achiropiitos	Churches	500	church	daily	yes	good	severe	no	yes	good	sloping	three	isolated	0.99	i du
The Church of St.Panteleim on	Churches	1300	church	Daily	yes	good	severe	no	yes	good	flat ground	one	isolated	0.95	
The Church of Ayia Sophia	Churches	800	church	daily	yes	good	light	no	yes	good	flat ground	three	isolated	0.99	nue
The Church of Ayios Nikolaos Orphanos	Churches	1400	church	daily	yes	medium				good	flat ground	three	isolated	0.95	X CS
The Church of Hosios David	Churches	600	church	daily	yes	good	severe	no	yes	good	flat ground	one	isolated	0.89	
The Rotunda Minaret	Minaret	300	0	Occasional	yes	good	severe	no	yes	good	flat ground	circular	isolated	0.736	duc
Гhe White Гower	tower	0	Museum	daily	yes	good	light	no	yes	good	slopping	circular	isolated	0.796	
Galerios Arch (Kamara)	arch	0	0	Daily	yes	good	light	yes	yes	good	flat ground	not meaning ful	isolated	0.456	

The vulnerability index is then inserted in the GIS database

Mu	ημεία
	0.456- 0.596
	0.596 - 0.696
	0.696 - 0.796
	0.796- 0.93
	0.93 - 0.99

Earthquake scenario

maximum predicted PGA's are overlaid on the GIS map showing the locations of monuments

Predicted damage

$$\mu_D = 2.5 \cdot \left[1 + \tanh\left(\frac{I + 3.4375 \cdot i_v - 8.9125}{3}\right) \right]$$

predicted damage grade is plotted on the GIS map

Results of the earthquake scenario for monumental buildings

NUM	PER
0	0%
0	0%
5	11%
32	70%
9	20%
	NUM 0 5 32 9

the majority of monuments will suffer a damage grade of
 4 while a significant number will sustain damage of 4-5
 (near collapse)

this prediction is, of course, related to the severity of the scenario earthquake, and all comments made in this respect in the WP04 section are also pertinent herein

Thank you!