Panel	Moderator/ members	Panel topic	No. Tot.
P1	De La Quintana J.	Case study of performace based fire engineering	
	Zhang J.	Using opensees for an RC frame in fire	1 1
	Lopes N.	Evaluation of the fire resistance of the steel structure of a waste treatment plant using structural fire safety engineering	2 2
	Kotsovinos P.	Fire resistance of steel trusses with opensees	3 3
	Du Yong D.	Loading-bearing capacity method for structural fire safety design – A case study	4 4
	Giuliani L.	Simulation of the structural behaviour of steel-framed building in fire	5 5
	Nigro E.	Application of Fire Safety Engineering for open car parks in Italy	6 6
	Zehfuss J.	Case studies of a new simplified natural fire model and safety concept for structural fire safety design	7 7
	Molkens T.	Structural fire engineering in building renovation: Application of natural fire and heat transfer models	8 8
D 2	Outional		
P2	Outinen J.	Latest development in fire testing Munich fire tests on membrane action of composite slabs in fire: Test results and recent findings	1 0
	Stadler M.	Prediction of temperature variation in an experimental building	1 9
	Cheng X.		2 10
	Huang S-S.	A structural fire engineering prediction for The Veselí fire tests, 2011 Fire protection of steel structures using Automatinc water extinguishing system	3 11
	Outinen J.		4 12
	Han J.	Effective thermal conductivity of fire proof materials and the measuring method	5 13
	Tsatsoulas D.	The impact of flame retarded timber on Greek industries	6 14
	Bilotta A.	Adhesion at high temperature of FRP bars straight or bent at the end of concrete slabs	7 15
Р3	Rein G.	Current stage of fire modelling	
	Björkman J.	Fire load survey of commercial premises in Finland	1 16
	Heinisuo M.	Systematisation of design fire loads in an integrated fire design system	2 17
	Rein G.	Travelling fires in large comparments: Realistic fire dynamics for structural design	3 18
	Shi K.	Stochastic analysis of structures in fire by Monte Carlo simulation	4 19
	Dudáček A.	Fire simulation application in fire safety design for tunnel structures	5 20
	Klinzmann C.	The role of active fire protection measures in a national fire safety concept in Germany	6 21
	Petrini F.	Computational modelling for performance based fire engineering (PBFE)	7 22
	Gentili F.	Role of CFD in the quantitative assessment of structural performance in fire scenarios	8 23
P4	Zaharia R.	Advanced material modelling at elevated temperature	
	Lee J.	Modelling creep in steel structures exposed to fire	1 24
	Lange J.	Material and creep behaviour of S460 in case of fire: Experimental investigation and analytical modelling	2 25
	Korzen M.	Constitutive equations for structural steel subjected to fire: Some remarks	3 26
	Hopkin D.	A numerically modified conductivity model for softwood exposed to parametric design fire	4 27
	Abramowicz M.	Mechanical properties of reinforcing bars heated up under steady stress conditions	5 28
	Ervine A.	Thermal diffusivity of tensile cracked concrete	6 29
	Hager I.	Colour change of heated concrete: RGB colour histogram analysis as a method for fire damage assessment of concrete	7 30
	Smith H.K.M	Shear strength of concrete at elevated temperature	8 31

P5	Kodur V.	Development of advanced mechanical modelling	
	Van Coile r.	Probabilistic analysis of concrete beams during fire	1
	Lazarov L.	RC frame exposed to fire after earthquake	2
	Ab Kadir M.A.	Modelling of reinforced concrete frames in fire following an earthquake	3
	Annerel E.	Techniques for the evaluation of concrete structures after fire	4
	Jiang J.	Numerical analysis of structures in fire using opensees	5
	Jiang Y.	Development of heat transfer modelling capability in opensees for structures in fire	6
	Kodur V.	A macroscopic finite element based computer model of FRP-strengthened reinforced concrete beams	7
	Lilliu G.	Fire analysis of RC precast segmental tunnels	8
P6	Vila Real P.	Development of simple elemental modelling	
	Hirashima T.	An approximation method for critical temperatures of steel members and horizontal displacements of columns	1
	Vila Real P.	Modelling of multiple local fire and steel structure members response using software Elefir-EN	2
	Čajka R.	Study of slab fire resistance according to eurocode using different computational methods	3
	Vargovsky K.	Software applications for estimation of fire resistance of building structure	4
	Zaharia R.	Simplified method for temperature distribution in slim floor beams	5
	Štefan R.	Fire design of concrete and masonry structures: software tools	6
7	Kwasniewski L.	Compressed elements in fire	
P7	Sokol Z.	Temperature of steel columns exposed to localised fire	1
	Sun R.	Behaviour of frame columns in localised fires	2
	Tsalikis C.T.	Elastic buckling of steel columns under thermal gradient	3
	Kwasniewski L.	Coupled structural-thermal calculations for restrained steel columns in fire	4
	Lu L.	Influence of transient strain on fire resistance of concrete elements	5
		A rational approach to fire resistance analysis of RC columns subjected to uniaxial/biaxial bending and axial restraint	
	Nguyen T.T. Cvetkovska M.	Axial restrain effects of fire resistance of statically indeterminate RC beams	6 7
	Hadjisophocleous G.	Fire modelling of axially-restrained tubular steel beams	8
no		Connections in fire	
P8	Tan K.H.	Influence of semi-rigid joint moment-rotation characteristics on the behaviour of composite steel-framed structures	
	Tan K.H.		1
	Dong G.	Component-based element for endplate connections in fire	2
	Yu H.	The fractural behaviour of steel welds at high temperature	3
	Qiang X.	Numerical analysis of HSS endplate connections at ambient and elevated temperatures Fracture simulation of a flush endplate connection at fire	4
	Kirsch T.	Fracture simulation of a flush endplate connection at fire	5
	Kalogeropoulos A.	Finite element analysis of bolted steel connections using contact mechanics	6
	Taib M.	A component-based model for fin-plate connections in fire	7
	Taib ivi.	Behaviour of heated composite joints: Preliminary numerical studies	8