WORKED EXAMPLE 7.1
 Simple Column Base

Calculate the design resistance of the column base shown in Figure below. The column cross-section is HE200B, the base plate thickness is 30 mm , and the concrete foundation block dimensions are $850 \times 850 \times 900 \mathrm{~mm}$. The steel is Grade S 235 and the concrete is Grade C20/25. The material partial safety factors are $\gamma_{M 0}=1,15$ and $\gamma_{c}=1,50$.

Figure 1 WE7-1

For the effective cross section of the foundation block:

$$
a_{1}=\min \left\{\begin{array}{l}
a+2 a_{r}=340+2 * 255=850 \\
5 a=5 * 340=1700 \\
a+h=340+900=1240 \\
5 b_{1}=5 * 850=4250
\end{array}\right\}=850 \mathrm{~mm}
$$

and, from symmetry $b_{1}=a_{1}$. The stress concentration factor is

$$
k_{j}=\sqrt{\frac{a_{1} b_{1}}{a b}}=\sqrt{\frac{850 * 850}{340 * 340}}=2,5 .
$$

The bearing strength of the concrete under the base-plate is

$$
f_{j}=\frac{0,67 k_{j} f_{c k}}{\gamma_{c}}=\frac{0,67 * 2,5 * 20,0}{1,50}=22,3 \mathrm{MPa} .
$$

A rigid plate of effective width c, surrounding the column H -section, replaces the flexible base-plate:

$$
c=t \sqrt{\frac{f_{y}}{3 f_{j} \gamma_{M O}}}=30 * \sqrt{\frac{235}{3 * 22,3 * 1,15}}=52,4 \mathrm{~mm} .
$$

The effective area (see Fig. 5.11.2) is

Figure 2WE7-1

$$
\begin{array}{r}
A_{\text {eff }}=(200+2 * 52,4) \times(200+2 * 52,4)-(200+2 * 52,4-9-2 * 52,4) \times(200-2 * 15-2 * 52,4) \\
\\
=80449 \mathrm{~mm}^{2}
\end{array}
$$

The design resistance of the column base is

$$
N_{R d}=A_{\text {eff }} f_{j}=80449 * 22,3=1794 * 10^{3} \mathrm{~N}
$$

Concrete C20/25
Steel S235 J2
Scale: 1:10

Figure 3WE7-1 Design drawing of the column base.
The anchor bolts are designed for structural integrity.

Notes:

1) The design resistance of the column is lower than the resistance of the column base: $N_{p l . R d}=A f_{y} / \gamma_{M O}=7808 * 235 / 1,15=1596 * 10^{3} \mathrm{~N}<N_{R d}=1794 \mathrm{kN}$, where A is the column cross-sectional area.
2) The joint coefficient is taken as $2 / 3$ provided that the characteristic strength of the grout is not less than 0,2 times the characteristic strength of the concrete foundation, and the grout thickness is less than $0,2 * \min (a ; b)=0,2 * 340=68 \mathrm{~mm}$.
3) Packing plates (see Fig. 5.11.3) are used to level the base plate during erection.

Prepared based on [Wald et al, 2001].

