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Schedule

Basic Concepts of Thermodynamics
System, Process, State, Equations of State

1th Law, Energy Balance Equation, specific heat capacity

Heat Transfer
heat conduction, radiation, convection

Newton’s law of cooling

Mass Transfer
water vapour difussion, condensation

Bonus – Basics of Technical Typography
Fonts, units, variables
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System System

The System

Any volume separated by a boundary from the surroundings
air in a room
a concrete wall
a building
steam or exhaust gases in an engine
a liquid in a pipe

Types of the system
open – mass crosses the boundary (windows open)
closed – a fixed quantity of mass (windows closed)
insulated (adiabatic) – heat does not cross the boundary

quality insulation, symmetry planes
it is a relative term - the point is that the exchange of heat with
the environment is insignificant compared to the processes
inside
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System System

State of the system

State variables

θ – temperature (K, ◦C)
ρ – density (kgm−3)

p – pressure (Pa)
σ – stress (Pa)

V – volume (m3)
l – length (m)

Equations of state – describe relationship between state
variables

pV = nRT
σ = Eε|θ=konst.

l = l0 (1+ αθ) |σ=konst.

– ideal gas law
– Hook’s law
– linear thermal expansion
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System System

Ideal gas law

pV = nRT
,

p – pressure of the gas (Pa)

V – volume of the system

n = m
μ – the amount of substance (mol)
where μ is the molar mass of the gas

R = 8.31 J K−1mol−1 – universal gas constant

6 / 129



System System

Ideal gas law

Example: Chimney draft
Determine pressure at the bottom of a chimney

height of the chimney h = 50m,

temperature inside of the chimney θi = 60 ◦C,

ambient (external) temperature θe = −10 ◦C

Solution
Let’s consider two systems – outside (e) and inside (i)
Both systems are in contact on top of the chimney – there is the
same pressure (p0)
The difference in pressures outside and inside at the chimney base
is therefore only due to the difference in hydrostatic pressures
outside and inside 7 / 129



System System

Ideal gas law

Chimney draft – continuation
hydrostatic pressure at the chimney base inside:
pi = p0 + ρigh,

hydrostatic pressure at the chimney base outside:
pe = p0 + ρegh,

the difference: Δp = pe − pi = (ρe − ρi)gh

density of air (or flue gases)
pV = m

μ RT ⇒ p = ρ
μRT =⇒ ρ = pμ

RT

because Δp ≪ p0, so ρi =
p0μi
RTi

and ρe = p0μe
RTe

8 / 129



System System

Ideal gas law

Chimney draft – cont.
so ρi =

p0μi
RTi

and also ρe = p0μe
RTe

we know the temperature and pressure, the molar mass
remains to be determined

google for the air
molar mass of flue gases should be calculated

depend on the fuel and excess air
approximately we can assume μi

.
= 28gmol−1

Δp = (ρe − ρi)gh = p0gh
R

(
μe
Te − μi

Ti

)
=

1,013·1059,81·50
8,31

(
28,97
263,15 − 28

333,15

)
· 10−3 = 156Pa
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System Thermodynamic processes

Thermodynamic Process

Process = system change.
The process is described by changing the status parameters!

Types of processes
isochoric (izovolumic) (V = konst.)

isothermic (θ = konst.)

isobaric (p = konst.)

adiabatic (well insulated) (dQ = 0)

relaxation - the system is moving to thermodynamic
equilibrium

10 / 129



System Thermodynamic processes

Relaxation Process

Thermodynamic equilibrium
The condition of the system surroundings does not change

The system is moving into a state of equilibrium

The process is called a relaxation process

Time how long it takes - relaxing time

Relaxation time - how quickly a warm body cools down
depending on the size, capacity and thermal conductivity

cathedral x pin

thermometer – must be in thermodynamic equilibrium with
the surroundings!
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System Energy Balance - 1st Law of Thermodynamic

Energy Balance Equation

Example: gas confined by a piston in a cylinder (like an engine)

ΔU

ΔQ 

ΔW

1st Law of
Thermodynamic
ΔQ = ΔU+ ΔW

ΔQ – heat added to the system
ΔU – internal energy change (stored energy)
ΔW – the work done by expanding gas on the piston
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System Energy Balance - 1st Law of Thermodynamic

Internal Energy U

It is a measure of the total energy of particles (atoms, molecules)

dU = m cp dθ

dU = lv dm

boiling

U

θ
water heatingdU =

 m
 c k

 d
θ

steam heating

depends on
phase of matter
dU = l·dm
(l is latent heat)
temperature
dU = m · c · dθ
(c is specific heat)
amount of mass
(open systems)

13 / 129



System Energy Balance - 1st Law of Thermodynamic

Specific Heat Capacity

Definice
The amount of heat required to heat 1 kg of mass up 1 °C

c = 1
m

dQ
dθ

we know that dQ = dU+ dW , so

c = 1
m

dQ
dθ = 1

m

(dU
dθ + dW

dθ

)

14 / 129



System Energy Balance - 1st Law of Thermodynamic

Specific Heat Capacity Depends on Type of the
Process

cv – specific heat capacity at constant volume
c = 1

m
dQ
dθ = 1

m

(dU
dθ + dW

dθ

)
dW = 0 (izochoric process!) so

cv = 1
m

dU
dθ + 0

cp – specific heat capacity at constant pressure
during heating, the body usually expands
while doing work dW > 0

so cp > cv
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System Energy Balance - 1st Law of Thermodynamic

Specific Heat Capacity

material cp
kJ kg−1K−1

cv
kJ kg−1K−1

cp
kJm−3K−1

air 1,005 0,718 1,285
argon 0,52 0,312 0,924

flue gases 1 ? ?
water steam 1,97 1,5 ?

concrete 0,8 0,8 ~2300
bricks 0,8 0,8 by type
water 4,18 4,18 4200
steal 0,45 0,45 3530
ice 2,11 2,11 1940
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System Energy Balance - 1st Law of Thermodynamic

The heat capacity depends on the temperature
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Figure: Concrete capacity on temperature. The capacity increase above
600 °C corresponds to the endothermic decomposition of the limestone
aggregate.
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Heat Transfer Energy Balance

Energy Balance in a System (like Engine)

ΔU

ΔQ 

ΔW

Energy balance equation
(1thlaw)
ΔQ = ΔU+ ΔW

Energy can’t disappear (conservation of energy law!):
energy transferred to the system in the form of heat (ΔQ)
is either

1 stored in a form of internal energy (ΔU) increasing the
temperature of the system etc.

2 or used to do a work (ΔW) on the piston
18 / 129



Heat Transfer Energy Balance

Energy Balance in a Control Volume (ConcreteWall)

Instead of the engine we take another system - like a concrete wall

ΔU

ΔQin ΔQout

wall

Energy balance equation
ΔQ = ΔQin − ΔQout = ΔU+ 0(!!)

ΔQin – heat “flowing” into the wall

ΔQout – heat “leaking” from the wall on the other side

ΔU – the surplus of Q is stored in the wall
in a form of internal energy (temperature increases!)

ΔW = 0 (wall can’t work, there isn’t any piston!) 19 / 129



Heat Transfer Energy Balance

Heat Transfer – Energy Balance in a Wall (in Watts)

Expressing energy balance per unit of time - we obtain heat flows
(in watts)

Φin

U

Φout

wall

Energy balance eq.
d
dτ (ΔQin − ΔQout) =

d
dτ (ΔU+ ΔW)

Φin −Φout = U̇+ 0

ΔQ is the total amount of heat delivered (J)

Φ is the heat flow per unit of time (heat flow rate) Φ = dQ
dτ (W)

U̇ is the energy storage rate U̇ = dU
dτ (W)

20 / 129



Heat Transfer Energy Balance

Heat Transfer – Heat Flow

Φ – heat flow rate (aka heat rate, thermal flow) (W)

q – heat flux (Wm−2)

Energy balance in a wall
Φin −Φout = U̇ (heat surplus is stored in the wall)

Energy balance in a wall in steady state
U̇ = 0 (steady state, nothing changes with time)⇒
Φin −Φout = 0
Φin = Φout (flow out is equal to the flow in)

The same balance applies to surfaces (surface cannot store heat!)

21 / 129



Heat Transfer Mechanisms of Heat Transfer

Mechanisms of Heat transfer

Conduction
1D: the wall (homogeneous + multi-layer)

2D: the tube (cylindrical symmetry)

3D: the sphere (spherical symmetry)

Radiation
heat transfer from a surface to another surface

Convection
heat transfer from a surface to a room

heat transfer from a surface to another surface

22 / 129
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Heat Transfer Mechanisms of Heat Transfer

AWall - Mechanisms of Heat transfer

R1 R
2

Φ1 Φ2  Φse
Φsi

 

Rse
Rsi

conduction     in solids

2nd layer 1th layer 

radiation + convection 
on  surfaces

23 / 129



Conduction

Conduction

Always from a warm to a cold body
by the way which body is cold/warm ?

Bodies must be in direct contact

Principle: atoms share kinetic energy:

by means of collisions (in gases and liquids)
by means of diffusion of electrons (in metals)
by means of vibrations (in solids)

24 / 129



Conduction 1D Conduction (a Wall) – Fourier’s Law

1D Conduction (a Wall), Steady State

Fourier’s law
Φ = ΔQ

Δt = −Sλθ2−θ1Δx = −Sλ Δθ
Δx (W)

Φ – heat flow rate (W)

θ1,θ2 – temperature of surfaces

λ – thermal conductivity
(material property)

S – area of the wall
(perpendicular to the flow)

 
material

Δx

θ1 θ2

Φ

θ1 > θ2

25 / 129



Conduction 1D Conduction (a Wall) – Fourier’s Law

1D Conduction (Wall), Steady State

Heat flow expressed in
civil engineering annotation

Φ = −SUΔθ = −SΔθ
R

(1)

U = λ
Δx – overall heat transfer

coefficient
aka thermal transmittance
(in Wm−2 K−1)

R = Δx
λ – thermal resistance

aka R-value
(in Km2W−1)

 
material

Δx

θ1 θ2

Φ

θ1 > θ2

26 / 129



Conduction 1D Conduction (a Wall) – Fourier’s Law

Differential Form of Fourier’s Law

In the limit of very thin wall (Δx → 0):

Heat flow rate Φ

Φ = − lim
Δx→0

Sλ
Δθ
Δx

= −Sλdθ
dx

(W)

In the limit of very small area (S → 0):

Heat flux q

q = lim
S→0

Φ
S

= −λdθ
dx

(
Wm−2) (2)

Heat flux can be defined locally (point-wise)
it may vary from place to place⇒ 3D conduction
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Conduction 1D Conduction (a Wall) – Fourier’s Law

Multi-layer Wall, Steady State

Let suppose 1D conduction (no corners, no thermal bridges)

Δx
1

Δx
2

R1 R
2

θ2
θ

1

θ3

Φ1  Φ2  

 

1. vrstva 2. vrstva Fourier’s law

1th layer: Φ1 = Sθ1−θ2
R1

2nd layer: Φ2 = Sθ2−θ3
R2

plus continuity equation

Φ1 = Φ2 = Φ

28 / 129



Conduction 1D Conduction (a Wall) – Fourier’s Law

Multi-layer Wall

Solving above equations one gets:

Φ = S
θ1 − θ3
R1 + R2

(3)

and comparing with equation (1) one gets
total thermal resistance of the wall:

RT = R1 + R2

29 / 129



Conduction 1D Heat Transfer from Surface to Air

Heat Transfer from Surface to a Room

Φc = S hc(θsi-θi)
 }

wall
θsi

total heat 
transfer

air

Φr = S hr(θsi-θi)
Φs = Φr + Φc

heat transfer 
by radiation

heat transfer 
by convection

θi

  

 

 

Heat is transfer from the surface to
a room by means of

radiation (Φr)

convection (Φc)

Summing up both flows one gets
total heat flow Φs at the surface

Surface heat transfer
Φs = Φr +Φc = S (hr + hc) (θsi − θi)
Φs = Shs (θsi − θi) = S (θsi−θi)

Rs

hs – heat transfer coefficient
Rs – surface thermal resistance 30 / 129



Conduction 1D Heat Transfer from Surface to Air

Total Thermal Resistance RT

R1 R
2

θ
xθsi

θse

Φ1 Φ2  Φse
Φsi

 

θe

θi

Rse
Rsi

Steady-state
heat flow rate
Φsi = Φ1 = Φ2 = Φse = Φ

Φ = S θi−θe
Rsi+R1+R2+Rse

Total RT of the wall
RT = Rsi + R1 + R2 + Rse

31 / 129



Conduction Temperature-Dependent Conductivity

Heat Conductivity λ vs. Temperature

0
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Figure: Heat conductivity of concrete vs. temperature

Question: is it important to take it into account ? When?
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Conduction Temperature-Dependent Conductivity

Heat Conductivity λ vs. Temperature

Figure: Heat conductivity of rock mineral wool vs. temperature
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Conduction Temperature-Dependent Conductivity

Determining Thermal Resistance of a Wall

Fourier’s law: q = −λ (θ) dθ
dx and q = const. (steady state),

the eq. can be integrated easily:´ d
0 qdx = −

´ θ2
θ1

λ (θ)dθ

Example for λ (θ) = λ0 + a · θ + b · θ2, where λ0, a, b are
material parameters

q [x]d0 = −
[
λ0θ + aθ2

2 + bθ3
3

]θ2
θ1

q · d = −
(
λ0 (θ2 − θ1) + aθ22−θ

2
1

2 + bθ32−θ
3
1

3

)
q = − λ0(θ2−θ1)+a

θ22−θ21
2 +b

θ32−θ31
3

d ,
and so: R = (θ1−θ2)·d

λ0(θ2−θ1)+a
θ22−θ21

2 +b
θ32−θ31

3
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Conduction Temperature-Dependent Conductivity

Thermal Resistance of a Wall

Example - thermal insulation of a boiler
material: Knauf Insulation HTB 700,
λ0 = 0,514, a = 7,7 · 10−5, b = 2,21 · 10−7,
d = 5 cm

1 hot boiler
θ1 = 700 ◦C, θ2 = 100 ◦C
after substitution: R = 0.4Km2W−1

2 cold boiler
θ1 = 30 ◦C, θ2 = 20 ◦C
after substitution: R = 0.935Km2W−1

35 / 129



Conduction Two and Three Dimensional Conduction

Fourier’s Law in More Dimensions

Figure: Heat flows in direction of temperature gradient – in corners, near
thermal bridges, etc.

Question: Is direction of the heat flow correct?
Answer: No. Heat flow should be perpendicular to isotherms!!
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Conduction Two and Three Dimensional Conduction

Fourier’s Law in More Dimensions

3D Fourier’s law in Cartesian coordinates

qx = −λ∂θ
∂x

qy = −λ∂θ
∂y

qz = −λ∂θ
∂z

or symbolically written

−→q = −λgradθ

Heat flows in opposite direction of temperature gradient!

37 / 129



Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Problem: Heat Loss of a Hot Water Piping

Calculate heat loss of an insulated 20m long pipe!
pipe: PP PN20 Ø 20mm, λtr = 0.22WK−1m−1

hot water temperature θi = 80 ◦C
insulation: URSA RS 1/Alu 20mm, λiz = 0.0359WK−1m−1

ambient temperature θe = 10 ◦C

Calculation procedure:

1 heat resistance of PP pipe

2 + heat resistance of insulation

3 + heat resistance of surface layer

insulation

θi  

θe  

Φ = ?  

hot 
water

PP pipe

38 / 129



Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Conductive Heat Loss through Cylinder or PipeWall

1th step: a pipe without insulation, surface temperatures are
known

Suppose cylindrical symmetry -
the temperature gradient is only
in the radial direction (and the
same in all radial directions)

Therefore heat conduction is a
one-dimensional problem:

q = qr = −λdθ
dr

r

water q  

pipe wall

39 / 129



Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Pipe Wall – Energy Balance in Steady State

Heat flow rate (in watts!) through the inner surface of the wall
must be the same as heat flow through the outer surface

generally: Φ = Sq = −2πr l λdθdr = konst.

qin  qout (W/m2)

Φout (W)
Φin (W)

>

=

40 / 129



Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Pipe Wall – Steady State

Let’s solve the eq. Φ = −2πr l λdθdr = konst.

1 Separating variables we get: Φdr
r = −2πlλdθ

2 Integration using boundary conditions on inner and outer
surfaces i.e. θ (r1) = θ1, θ (r2) = θ2:

ˆ r2

r1
Φ
dr
r

= −2πlλ
ˆ θ2

θ1
dθ

Φ (ln r2 − ln r1) = −2πlλ (θ2 − θ1)

Φ = −l · 2πλ(θ2−θ1)
ln r2

r1

r1

r2

θ2

θ1
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Pipe Wall – Steady State

Let’s quantify the first step of the problem defined on slide 38

Example: PP pipe, 20 meters long, data as follows:
θ1 = 80 ◦C (hot water)

Inner diam. d1 = 13.2mm, outer diam. d2 = 20.0mm

Thermal conductivity λ = 0.22WK−1m−1

Temp. of outer surface θ2 = 76.5 ◦C (to be calculated later!)

Solution

Φ = −l · 2πλ(θ2−θ1)
ln r2

r1

Φ = −20 · 2·π·0,22·(76,5−80)
ln 20

13,2

Φ .
= 230W
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Pipe Wall – Heat Resistance

Compare heat flow formulas for “wall” and the pipe wall.

Generally: Heat Flow = transverse dimensions x some function
of longitudinal dimensions and conductivity (U, R – 1) x
temperature difference

Wall
Φ = −S · λ

d · (θ2 − θ1)

Φ = −S · 1
R · Δθ

Pipe wall
Φ = −l · 2πλ

ln r2
r1

· (θ2 − θ1)

Φ = −l · 1
Rl
· Δθ

As a transverse dimension, there is length l of the pipe!

The area S perpendicular to heat flux is not constant in the
case of pipelines!
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Pipe Wall – Heat Resistance

Thermal resistance per length

Rl =
ln r2

r1
2πλ

=
ln d+r1

r1
2πλ

(Km1W−1) (4)

Thermal resistance
grows logarithmically
with wall thickness!

r2

r1 d

0

2

4

6

8

10

12

14

16

0 0,1 0,2 0,3

R
(K

m
2

/W
; K

m
/W

)

d (m)

Thermal resistance of a wall

 cylinder wall
 planar wall
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Insulated Pipe Wall

To calculate the thermal resistance of
a two-layer pipe wall, we use a
procedure similar to that used in
calculating multi-layer wall resistance.

r2

r1

diz

r3

insulation

θ1  

θ2  

θ3  

Φ2  

Φ1  

pipe

The heat flow rate can be calculated for each layer separately:
Φ1 = −2πlλtr

ln r2
r1

(θ2 − θ1)

Φ2 = −2πlλiz
ln r3

r2

(θ3 − θ2)

temperature θ2 and heat flow rates Φ1 and Φ2 are unknown.

45 / 129



Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Insulated Pipe Wall

Supposing steady-state one gets:
Φ1 = Φ2 (continuity equation)

and excluding the unknown θ2:
Φ = l θ3−θ1

Rl,tr+Rl,iz
where

Rl,tr =
ln r2

r1
2πλtr , Rl,iz =

ln r3
r2

2πλiz
, l is the length of the pipe

Finally:

Thermal resistance of the pipe’s wall per length
Rl,c = Rl,tr + Rl,iz
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Insulated Pipe Wall

Let’s quantify the second step of the problem defined on slide 38

1 PP pipe, inner temper. θ1 = 80 ◦C:
Inner diam. d1 = 13.2mm, outer diam. d2 = 20.0mm
Thermal conductivity λtr = 0.22WK−1m−1

2 Insulation, outer temper. θ3 = 21.2 ◦C (to be calculated later!):
Inner diam. d2 = 20.0mm, outer diam. d3 = 60.0mm
Thermal conductivity λiz = 0.0359WK−1m−1

Rl,tr =
ln r2

r1
2πλtr =

ln 20
13,2

2·π·0,22· = 0.30mKW−1

Rl,iz =
ln r3

r2
2πλiz

=
ln 60

20
2·π·0,0359· = 4.87mKW−1

Rl,c = Rl,tr + Rl,iz = 5.17mKW−1

Φ = −l 1
Rl,c

Δθ = − 1
5,17 (21,2− 80) .

= 230W
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Surface Thermal Resistance

Heat flow rate Φ from the surface of the pipe to the air, can be
express by means of thermal resistance Rse or by the heat transfer
coefficient hse as we did in the case of heat flow through the wall:
Φ = l Δθ

Rl,se
= hseSΔθ, where

S = 2πr3l is area of the surface,

Δθ is temperature difference between surface and ambient air,

r3 is external radius of the insulated pipe.

By comparing one gets:

Surface thermal resistance of the pipe’s wall per length
Rl,se = Rse 1

2πr3
= 1

2πhser3
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Total Thermal Resistance of the Pipe’s Wall

Let’s quantify the third step of the problem defined on slide 38

Surface thermal resistance
hse = 5.42Wm−2 K−1(to be calculated later!)

Rl,se = Rse 1
2πr3

= 1
2πhser3

= 1
2π·5,42·0,030 = 0.98KmW

Total thermal resistance
Rl,T = Rl,tr + Rl,iz + Rl,se = 0,3+ 4,87+ 0,98 = 6.15KmW

Heat flow
Φ = −l 1

Rl,T
Δθ = − 1

6,15 (10− 80) .
= 230W
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Heat Loss of the Pipe – Summary

The problem is defined on slide 38
Now we can evaluate temperatures at the interfaces used in the
1th and the 2nd step of solution:

1 Using the formula Φ = −l · 2πλtr(θ2−θ1)
ln r2

r1

we can express θ2

θ2 = θ1 −Φ ln r2
r1
· 1
2πλtrl

θ2 = 80− 230 · ln 20
13,2 · 1

2π·0,22·20 = 76.5 ◦C

2 Using the formula Φ = −l 1
Rl,c

(θ3 − θ1)we can express θ3
θ3 = θ1 −ΦRl,c

l

θ3 = 80− 230 · 5,1720 = 20.5 ◦C
This seems to be a bit inaccurate…

(hopefully rounding errors ?)
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Total Thermal Resistance of the Pipe’s Wall

Rl,T = Rl,tr + Rl,iz + Rl,se =
ln rx

r1
2πλtr +

ln r2
rx

2πλiz
+ 1

2πhser2

0

1

2
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4

5

6
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)

insulation thickness d (m)

 total resistance

 resistance of the insulation
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Optimal Thickness of Insulation of the Pipe

Homework
Find the thickness of thermal insulation d, at which the overall
thermal resistance is minimal:

inner radius: r1 = 1mm

external radius (without insulation): rx = 2mm

thermal conductivity of insulation λiz = 0,050 Wm−1K−1

heat transfer coefficient hse = 8Wm−2K−1

calculate with accuracy better than ±0,1mm!
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Optimal Thickness of a Steel Pipe of a Radiator

Homework
Find the thickness d of a wall of a steel pipe of a radiator at which
the thermal power of the radiator is maximal:

inner radius: r1 = 10mm

thermal conductivity of steel λ = 50 Wm−1K−1

suppose, that surface heat transfer coefficient is constant:
hse = 8Wm−2K−1
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Thermal Conductivity is a Function of Temperature

1 heat transfer coefficient hse depends on temperature!!! (more
later)

2 thermal conductivity λ of thermal insulation depends on
temperature too (example below is for rock-wool):
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

Cu 12mm pipe

hot pipe: 90/15 °C cold pipe: 5/25 °C

software: URSABIL 2.2 [3]
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

The Temperature Drop Through a Hot
Water Piping

Problem
The hydraulic line is sitting in θe = 10 ◦C ambient air. The fluid is
flowing through the line defined in problem on slide 38 at fluid
flow ṁ = 0.5kg s−1 and the inlet temperature is known to be
θin = 80 ◦C. Find the outlet temperature θout, length of the line is
l = 20m.
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

The Temperature Drop Through a Hot
Water Piping

dθ denotes temperature drop of the fluid in length dl

The amount of heat lost by the cooling fluid per unit of time
can be determined using the calorimetric equation
dQ̇ = cṁdθ

The same amount of heat passes through the pipe wall in the
form of heat loss: dQ̇ = −dl θ−θeRl,T

, therefore

Energy balance equation
c ṁdθ = −dl θ−θeRl,T
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Conduction 2D Conduction – Cylindrical Symmetry (Pipe Wall)

The Temperature Drop Through a Hot
Water Piping

Let’s solve the equation c ṁdθ = −dl θ−θeRl,T

Separating variables: c ṁdθ
(θ−θe) = −dl 1

Rl,T

Integrating through the piping length:
´ θ
θi

c ṁdθ
(θ−θe) = − 1

Rl,T

´ l
0 dl

[ln (θ − θe)]θθi = − 1
c ṁ Rl,T

[l]l0
ln (θ−θe)

(θi−θe) = − l
c ṁ Rl,T

Temperature drop through the piping

θ (l) = θe + (θi − θe)exp
(
− l

c ṁ Rl,T

)
at l = 20m: θ (20) = 79.89 ◦C
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Conduction 3D Conduction – Sphere Symmetry

Heat flow in Spherical Symmetry

In case of steady-state:
Φ(r) = konst. heat flow through the spherical surface is
independent of its radius!

Φ(r) = S(r)q(r) = konst., S(r) = 4πr2

q(r) = −λ∂θ
∂r (Fourier’s law)

so: Φ(r) = −4πr2λ∂θ
∂r = konst.

Separating the variables we get:

−4πλdθ = Φ
dr
r2

(5)

r2

r1 d
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Conduction 3D Conduction – Sphere Symmetry

Heat flow in Spherical Symmetry

integrating the equation 5 we get:
−4πλ

´ θ2
θ1

dθ = Φ
´ r2
r1

dr
r2

−4πλ(θ2 − θ1) = −Φ( 1r2 −
1
r1
)

so the thermal flow: Φ = 4πλ (θ2−θ1)
( 1
r2
− 1

r1
)

and thermal resistance: R =
( 1
r2
− 1

r1
)

4πλ

(
KW−1)

Note the thermal resistance units – it is related neither to unit area
nor length.

Do you understand why ?
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Transient Conduction Energy Balance

1D Energy Balance

Heat flows in direction x only

q is a function of x: q = q (x)
q (x) is the flux in point x
q (x+ Δx) is the flux in point x+ Δx

x + Δx

 

x 

Δx

q(x)

Balance of heat in a layer
Into the layer flows: ΔQ = q(x) · Δτ · S

Within the same time flows out: q(x+ Δx) · Δτ · S

The difference remains in the layer:

61 / 129



Transient Conduction Energy Balance

1D Energy Balance

Heat flows in direction x only

q is a function of x: q = q (x)
q (x) is the flux in point x
q (x+ Δx) is the flux in point x+ Δx

x + Δx

 

x 

Δx

q(x + Δx)

Balance of heat in a layer
Into the layer flows: ΔQ = q(x) · Δτ · S

Within the same time flows out: q(x+ Δx) · Δτ · S

The difference remains in the layer:

61 / 129



Transient Conduction Energy Balance

1D Energy Balance

Heat flows in direction x only

q is a function of x: q = q (x)
q (x) is the flux in point x
q (x+ Δx) is the flux in point x+ Δx

x + Δx

 

x 

Δx

q(x + Δx)

Balance of heat in a layer
Into the layer flows: ΔQ = q(x) · Δτ · S

Within the same time flows out: q(x+ Δx) · Δτ · S

The difference remains in the layer:

−Δq · Δτ · S = − (q (x+ Δx)− q (x)) · Δτ · S = ΔQ
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Transient Conduction Energy Balance

Balance of Heat in Material Layer

Amount of heat remaining in the layer per unit of time:

ΔQ
Δτ

= −S · Δq

1th law of thermodynamic: ΔQ = ΔU, therefore

ΔU
Δτ

= −S · Δq

Internal energy U depends on temperature ΔU = mc Δθ,
therefore

mc Δθ
Δτ

= −S · Δq
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Transient Conduction Energy Balance

Balance of Heat in Material Layer

Amount of heat remaining in the layer per unit of time:
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Transient Conduction Energy Balance

Balance of Heat in Material Layer

Becausem = ρ · V and the volume of the layer can be
expressed V = S · Δxwe get

ρc Δθ · S · Δx
Δτ

= −S · Δq

and finally

ρc Δθ
Δτ

= −Δq
Δx

Energy balance in this form can be used directly to solve the
transient conduction problem bymeans of numerical methods
such as Finite Difference Method or Finite Volume Method
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Transient Conduction Energy Balance

Balance of Heat in Material Layer
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Transient Conduction Heat Equation

In the limit Δx → 0and Δτ → 0

Heat Equation

lim
Δτ→0

ρc Δθ
Δτ

= − lim
Δx→0

Δq
Δx

ρc
∂θ
∂τ

= − ∂

∂x
q

ρc
∂θ
∂τ

= − ∂

∂x

(
−λ∂θ

∂x

)
(6)

∂θ
∂τ

=
λ
ρc

∂2θ
∂x2

∂θ
∂τ

= a
∂2θ
∂x2

using Fourier’s law: q = −λ∂θ
∂x

a is thermal diffusivity
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Transient Conduction Heat Equation

Trivial Example

Water in pot on stove
Pour water ofm = 0,7 kg into the pot,

temperature of water θ1 = 20 °C.

Power of heating P = 3kW for τ = 5 minutes

Heat losses to the surroundings are Qz = −600kJ

What is the final temperature of the water θx?
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Transient Conduction Heat Equation

Water in pot on stove

Energy balance equation
ΔQ = P · τ + Qz

ΔU = (θx − θ1)mc

because ΔU = ΔQ so:

θx =
P · τ + Qz + θ1mc

mc
= 122 °C

Isn’t that too much?
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Transient Conduction Heat Equation

Water in pot on stove

Solution
The final temperature can’t be higher then boiling point θv, so
θx = θv

Recalculate the internal energy change for θx = θv
and add the change in inner energy caused by the change of
state
ΔU = (θv − θ1)mc+mvlv

Using equality ΔU = ΔQwe can determine the amount of
evaporated watermv:
mv =

P·τ+Qz−(θv−θ1)mc
lv

mv = 0,029kg
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Transient Conduction Heat Equation

Solving the Heat Equation ∂θ
∂τ=

λ
ρc

∂2θ
∂x2

It is a partial differential equation, can be solved:

Analytically – possible only in few simple cases

Numerically
by FEM (Finite Element Method) aka MKP
by FDM (Finite Difference Method) aka MKD
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Transient Conduction Heat Equation

Analytical solution in a trivial case

Let’s solve the heat equation in a trivial case of heat conduction in
a homogeneous wall of thickness d in a steady state, with
boundary conditions θ (0) = θsi, θ (d) = θse.

It is steady state, so ∂θ
∂τ = 0 and the equation:

0 =
λ
ρc

∂2θ
∂x2

0 =
∂2θ
∂x2

c1 =

ˆ
∂2θ
∂x2

dx

c1x+ c2 =

ˆ
∂θ
∂x

dx

c1x+ c2 = θ (x)
69 / 129



Transient Conduction Heat Equation

Analytical solution in a trivial case

Thus, the temperature in the wall is linear

θ (x) = c1x+ c2

The integration constants remain to be determined c1 a c2 .
We determine them by substituting boundary conditions:

x = 0 so θ (0) = c1 · 0+ c2 = c2 = θsi
x = d so θ (d) = c1 · d+ c2 = c1d+ θsi = θse

so c1 =θse−θsi
d and finally

θ (x) =
θse − θsi

d
x+ θsi
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Transient Conduction Heat Equation

Boundary Conditions

Boundary conditions can be
constant
time dependent (for example periodically)

Dirichlet boundary
condition
θ (0, τ) = f1 (τ)
θ (d, τ) = f2 (τ)
where f is a known
function defined on the
boundary

Contact of two solid bodies
At the interface:
flow from left = flow to right
−λ1 dθdx |from left = −λ2 dθdx |from right
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Transient Conduction Heat Equation

Boundary Conditions

Newton boundary condition
At the boundary the heat transfer coefficient hse is known
and also ambient temperature θe

Flow from left = flow to right:

−λdθdx |at boundary = hse (θe − θ)

Neumann boundary condition
At the boundary heat flux is known
q (0, τ) = f1 (τ)
q (d, τ) = f2 (τ)

Special cases: well insulated body or plane of symmetry:
q (0, τ) = q (d, τ) = 0 so λdθdx |at boundary = 0
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Transient Conduction Heat Equation

Periodic (sinusoidal) boundary conditions

To determine the dynamic behavior of the structure in summer
The amplitude of temperature variation on the external
surface is attenuated in the structure
There is also delay (phase shift) of maxima and minima

 

 

θse

θsi
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Transient Conduction Heat Equation

Thermal performance of building components
according to EN ISO 13786

Periodic boundary conditions are defined as follows

θe(τ) = θ̄e + θe0 cos
(
2π
T
τ + φ

)

θi(τ) = θ̄i + θi0 cos
(
2π
T
τ + φ+ ψ

)
θe0 –amplitudeof external temperature

θ̄e –average external temperature

ψ – phase shift (lag) of the inner temperature versus external
temperature

T– period (24 hours; one year...)
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Transient Conduction Heat Equation

Dynamic behavior according to EN ISO 13786

Any complex number â can be written in a trigonometric form
as follows:

â = |â| · (cosα + i sinα) = |â| · eiα

Then the periodic part of the external temperature
θe(τ) = θ̄e +

∣∣∣θ̂e∣∣∣ cos (2πT τ + φ
)

can be written as a real part of a complex number
θ̂e =

∣∣∣θ̂e∣∣∣ · e 2π
T τ · eiφ

so θe(τ) = θ̄e + Re
(∣∣∣θ̂e∣∣∣ · e 2π

T τ · eiφ
)

The periodic parts of the temperatures and fluxes
are treated as complex numbers θ̂e, θ̂i, q̂si, q̂se…

75 / 129



Transient Conduction Heat Equation

Dynamic behavior according to EN ISO 13786

The standard EN ISO 13786 defines various quantities, eg:

Periodic thermal admittance on inner and outer surfaces

Periodic thermal transmittance

Periodic capacity on inner and outer surfaces

Periodic heat flux through the structure in a given direction
(usually from the outside to the inside)

Decrement factor ratio of the modulus of the periodic thermal
transmittance to the steady-state thermal
transmittance U
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Transient Conduction Heat Equation

Periodic thermal admittance

Periodic thermal admittance on inner surface

Complex quantity defined as the complex amplitude
of the heat flux through the inner surface,
divided by the complex amplitude of the inner temperature,
when the temperature on the other side is held constant

θ̂i is the complex amplitude of the inner temperature

q̂si the complex amplitude of the heat flux through the inner
surface

Ŷii =
q̂si
θ̂i

∣∣∣∣
θe=konst.

(
Wm−2K−1)
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Transient Conduction Heat Equation

Periodic thermal admittance – capacity

κ̂si heat capacity amount of heat acumulated into inner surface
during one period per square metre and per 1K
temperature diffrence.

κ̂si =
Ŷii − Ŷie

ω
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Transient Conduction Heat Equation

Periodic thermal admittance

Periodic thermal admittance on inner surface

structure
modulus lag periodic capacity
(Wm-2K-1) (h) (kJm-2K-1)

bricks 45 cm 4,7 +1,3 66
ditto + ETICS 4,7 +1,3 66

Porotherm 44 cm 3,3 +2,6 46
light structure OSB 1,6 +4,6 19

Heavy structure on the inner side of the perimeter wall provides
greater resistance of the interior against overheating caused for
example by solar power through windows
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Transient Conduction Heat Equation

Periodic thermal transmittance

Periodic thermal transmittance

Complex quantity defined as the complex amplitude
of the heat flux through the inner surface,
divided by the complex amplitude of the external
temperature,
when the temperature on the other side is held constant

θ̂e is the complex amplitude of the external temperature

q̂si is the complex amplitude of the heat flux through the inner
surface

Ŷie =
q̂si
θ̂e

∣∣∣∣
θi=konst.
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Transient Conduction Heat Equation

Periodic thermal transmittance

f – decrement factor – ratio of the modulus of the periodic
thermal transmittance Ŷie to the steady-state thermal
transmittance U

f =
Ŷie
U

=

∣∣∣∣ q̂siθ̂e

∣∣∣∣ · ∣∣∣∣θi − θe
qsi

∣∣∣∣
δ – periodic penetration depth depth at which the amplitude of

the temperature variations are reduced by the factor
“e” in a homogeneous material of infinite thickness
subjected to sinusoidal temperature variations on its
surface

δ =

√
λT
πρc
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Transient Conduction Heat Equation

Thermal transmittance

Thermal transmittance

structure
static periodic Ŷie decrem. attenuation

U modulus lag factor f
∣∣∣ θ̂siθ̂se

∣∣∣
Wm-2K-1 Wm-2K-1 h - -

bricks 45 cm 1,34 0,10 -16 0,08 75
ditto + ETICS 0,17 0,003 -18 0,02 2190
Porot. 44 cm 0,32 0,008 -23 0,03 980

light 0,13 0,12 -3 0,92 63
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Radiation Surface Radiation

Radiation of solids and liquids

Surface of each body emits energy
in the form of elektromagnetic radiation

in a wide range of wavelength λ

Radiation can be
• infrared (IR) • visible • ultraviolet (UV)

Basic physical quantities
Radiant power Φ (W) – radiant energy emitted per unit time.

Radiant flux H = dΦ
dS (W/m2) – radiant power per unit area.

Spectral Radiant flux Hλ =
dH
dλ – Radiant flux per unit

wavelength.
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Radiation Surface Radiation

Planck’s law for ideal surfaces

Radiation of ideal (aka absolutely black) body
is governed by Planck’s law

Planck’s law

Hλč =
2πhc2

λ5
(
e

hc
λkT−1

) (
Wm−2m−1)

T– temperature of the body
(in Kelvins!!)

λ – wavelength

the rest are physical
constants

UV VISIBLE INFRARED

0 0.5 1 1.5 2 2.5 3

H
λ 

(a
 .u

.)

λ (μm)

5000 K

4000 K

3000 K

0 0.5 1 1.5 2 2.5
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Radiation Surface Radiation

Planck’s law for ideal surfaces

Radiation of ideal (aka absolutely black) body
is governed by Planck’s law

The warmer the body is, the
more it emits at shorter
wavelengths - the bluer it is

Cooler bodies emit more at
longer wavelengths - so they
are red

or even radiate only in the
invisible infrared region.
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Radiation Surface Radiation

Planck’s law for real surfaces

Real surfaces emit radiation worse than ideal surfaces
The ability to emit is determined by a property called
emissivity e
Spectral Radiant flux of a real surface can be expressed as

Hλ = e(λ)Hλč

Hλč is spectral Radiant flux of a black body

Emissivity e (λ)
emissivity is lower then one and greater then zero:
0 ≤ e (λ) ≤ 1

it depends on the wavelength of the emitted radiation

the surface at some wavelengths may radiate better
than at others
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Radiation Surface Radiation

Emissivity – examples

The ideal emitter (absolutely black body)
the ideal emitter has an emissivity equal to one
for all wavelengths

it is called an "absolutely black body"

Why?
the ideal emitter is also the ideal absorber
it is absolutely black in the incident light!

Examples of real surfaces
the emissivity of the polished metals in the infrared range is
very low

this can be used to reduce heat loss by radiation
aluminum under-roof foils, etc.
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Radiation Surface Radiation

Wien’s displacement law

The spectral radiant flux of black-body radiation peaks
at the wavelength λmax:

λmax = b
T (m)

λ (nm)

H
λ

λmax  

where b = 2,8978 10−3(mK) is Wien’s constant

Surface of The Sun A Human Body

Temperature 5780 K 310 K
λmax/nm 500 (blue-green light) 9300 (IR)
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Radiation Surface Radiation

Radiant flux of a Surface over
Full Wavelength Range

Integrating Planck’s law over the full wavelength range
(from zero to infinity)

The result is the Stefan-Boltzmann law.

Stefan-Boltzmann law

H =

∞̂

0

Hλdλ =

∞̂

0

e(λ)
2πhc2

λ5
(
e

hc
λkT − 1

)dλ = e (T)σT4
(
Wm−2)
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Radiation Surface Radiation

Radiant flux of a Surface

Stefan-Boltzmann law

H = e (T) · σT4
(
Wm−2)

σ = 5,6710−8 (Wm−2 K−4) is Boltzmann constant.

Emissivity e (T)
This time as a function of surface temperature,
not a function of wavelength!

Examples:
absolutely black body:
e (λ) = 1 for all wavelengths, therefore e (T) = 1
„gray“ body:
e (λ) = const. < 1 for all wavelengths, therefore e (T) = const.
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Radiation Surface Radiation

Radiant flux of a Surface and IR cameras

Thermal cameras determine surface temperature by
measuring radiant flux H of the surface as

T =
4

√
H

e · σ

The determination of the temperature is therefore strongly
influenced by emissivity of the surface

We have to know the emissivity of the surface and set the
camera correctly!

90 / 129



Radiation Surface Radiation

Surface temperature determined by IR camera

Example - a kettle with hot water
a piece of adhesive tape is stuck on the kettle

Low emissivity steel radiates much less compared to the tape
The thermal camera shows much lower apparent temperature!
Despite the fact, that the temperature of metal is higher
(it has lower heat loss to the surroundings)!
Q: Why is the cable red? 91 / 129



Radiation Radiation absorbed by the body surface

Radiation absorbed by the body surface

We can already calculate radiant power
of a surface at a certain temperature.
But what is going on with the emitted radiation?

irradiates other surfaces
where it is either reflected or absorbed

Incident radiation (irradiation) is marked as: E
(
Wm−2) .

The ability of a surface to absorb incident radiation is called
absorptivity (absorption factor) a.

its value lies between zero and one a ∈ ⟨0,1⟩
for most materials a (λ) = e (λ)
absorptivity of an "absolutely black body" a = 1.
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Radiation Radiation absorbed by the body surface

Reflected radiation

Incident radiation E is partially absorbed (Ep = a · E)
the rest Er = E− Ep, is reflected
Compare the hand reflection by means of thermal camera

1 in a mirror (i.e. on a glass with high absorption)
2 on aluminum foil with low absorption

aluminum foil reflects in the IR region markedly better! 93 / 129



Radiation Radiation absorbed by the body surface

Kirchhoff’s law

Because a (λ) = e (λ) also a (T1) = e (T2) for |T1 − T2| < 1000K
(so called Kirchhoff’s law )

Table: Emisivitty and absorptivity at different temperatures

Temperature ≈ 300 K ≈ 6000 K
radiation IR UV + visible + IR
material a (T) = e (T)

white paint ≈ 0,8 < 0,1
clean metal < 0,1 ≈ 0,1

glass 0,837 transparent
black paint ≈ 0,8 > 0,9

selektive absorber ≈ 0,05 ≈ 0,95
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Radiation Radiation absorbed by the body surface

Selective absorbers for solar collectors

Materials that have high absorptivity for solar iradiation
high use of sunlight

low absorptivity (and emissivity!!!) for infrared radiation
low heat loss

Table: Emisivity and absorptivity of selective absorbers

Temperature ≈ 350K ≈ 6000K
radiation IR UV + visible + IR
material a (T) = e (T)

NixAlyOz ≈ 0,1 0,92 - 0,97
Crystal Clear™ 0,04 - 0,09 0,94 – 0,96

TiNOX ≈ 0,05 ≈ 0,91
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Radiation Radiation absorbed by the body surface

TiNOX – Selective absorber for solar collectors

96 / 129



Radiation Heat exchange by radiation between two surfaces

Two opposing planar surfaces

T1, a1

T2,  a2

Air gap

1th surface  

2nd surface  

geometrically simplest case:

Infinitely large planar
parallel surfaces

The first surface with
temperature T1 ,
emissivity and
absorptivity a1

The second surface with
temperature T2 ,
emissivity and
absorptivity a2

According to Kirchhoff’s
law: a1 = e1, a2 = e2
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Radiation Heat exchange by radiation between two surfaces

Two opposing planar surfaces

All radiation emitted by one
surface falls on the opposite
surface, so
H1 = E2
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Radiation Heat exchange by radiation between two surfaces

Two opposing planar surfaces

Only part of the incident
radiation E2 is absorbed
(Ep2 = a2E2), the rest is
reflected
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Radiation Heat exchange by radiation between two surfaces

Two opposing planar surfaces

The radiation reflected from
the right surface is partially
reflected from the left and
returned…

And again…

And again…
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Radiation Heat exchange by radiation between two surfaces

Two opposing planar surfaces

T1, a1 T2, a2H
1 =σa1T1

4 

(1-a2)E2

a2E2

  

 

(1-a1)(1-a2)E2 (1-a1)(1-a2)a2E2

(1-a1)2(1-a2)2
E2

(1-a1)(1
-a2)

2 E2

 

(1-a1)2(1-a2)2a2E2

a2
a2 + a1 - a1a2

E2
in total absorbed: Ep2 = 

Total radiation absorbed by
the right surface (sum of
infinite geometric series):

Ep2 = a2E2
(
1+ q+ q2 + ...

)
q = (1− a1) (1− a2)

∞∑
n=0

qn =
1

1− q

Ep2 =
a2

a1 + a2 − a1a2
E2
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Radiation Heat exchange by radiation between two surfaces

Two opposing planar surfaces

we have finally radiation absorbed by the right surface:

Ep2 =
a2

a1 + a2 − a1a2
E2 =

a2
a1 + a2 − a1a2

H1 =
a1a2

a1 + a2 − a1a2
σT41

analogously the left surface absorbs radiation emitted by the
right surface:

Ep1 =
a1a2

a1 + a2 − a1a2
σT42

total radiation heat flow (from left to right):

qr = Ep2 − Ep1 = − a1a2
a1+a2−a1a2σ

(
T42 − T41

)
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Radiation Heat exchange by radiation between two surfaces

Linearization

The difference of the fourth powers of temperatures is not
practical, so we express it linearly by means of Taylor’s series:

f(x) = f(a) +
f′(a)
1!

(x− a) +
f′′(a)
2!

(x− a)2 +
f(3)(a)
3!

(x− a)3 + ...

In our case f(x) = T4

Using only the first linear term, we have
T42 − T41

.
= 4T31 (T2 − T1)

.
= 4T3 (T2 − T1)

.
= 4T3 (θ2 − θ1)

where T =
T2 + T1

2
The radiation heat flux can finally be approximately expressed
as

qr = − a1a2
a1+a2−a1a2σ4T

3
(θ2 − θ1)
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Radiation Heat exchange by radiation between two surfaces

Linearization - heat transfer coefficient

Heat flux transmitted by radiation qr we expressed as

qr = − a1a2
a1 + a2 − a1a2

σ4T3 (θ2 − θ1)

It can also be written:

qr = −hr (θ2 − θ1)

Comparing both expressions we get hr (radiation part of the
heat transfer coefficient):

hr = 4 a1a2
a1+a2−a1a2σT

3
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Radiation Heat exchange by radiation between two surfaces

Heat transfer in the air gap

radiation

convection

The heat is transferred in the gap
by

radiation
and at the same time
convection (of air)

qc is the convective part of the flux

qr is the radiant part of the flux

Total heat flux:
qT = qr + qc = (hr + hc) (θ1 − θ2)
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Radiation Heat exchange by radiation between two surfaces

Heat transfer in the air gap

radiation

qr = hr (θ1 − θ2)

convection

qc = hc (θ1 − θ2)

The heat is transferred in the gap
by

radiation
and at the same time
convection (of air)

qc is the convective part of the flux

qr is the radiant part of the flux

Total heat flux:
qT = qr + qc = (hr + hc) (θ1 − θ2)
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Radiation Heat exchange by radiation between two surfaces

Thermal Resistance Rg to the Heat Transfer
in the Air Gap

Total heat flux in the air gap
is the sum of radiation and convection

qT = qr + qc = (hr + hc) (θ1 − θ2) = hT (θ1 − θ2) =
(θ1−θ2)

Rm

Rg is the thermal resistance of the air gap, obviously:

Rg = 1
hr+hc
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Radiation Heat exchange by radiation between two surfaces

Reduction of the heat transfer in the gap

radiation

convection

Heat transfer occurs by
radiation
convection (including
conduction)

Radiation can be reduced
but

the convection remains
unchanged…
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Radiation Heat exchange by radiation between two surfaces

Reduction of the heat transfer in the gap

radiation

convection

Heat transfer occurs by
radiation
convection (including
conduction)

Radiation can be reduced
but

the convection remains
unchanged…
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Radiation Heat exchange by radiation between two surfaces

Reduction of the radiant heat transfer

How can we limit the heat transfer by radiation?
1 By reducing the emissivity of surfaces in the IR region

clean metal surfaces
metal foils (under-roof foils)
metallized surfaces (double glazing)

2 Inserting a screen into the gap
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Radiation Heat exchange by radiation between two surfaces

Double glazing

Rsi

R1

Rg

R2

Rse

Total thermal resistance of the
double glazing is the sum of all
resistances in series

RT = Rsi + R1 + Rg + R2 + Rsi

emissivity of glass e = 0,837

heat resistance of the gap Rg is
enlarged by metal plating!

emissivity of plating e ≃ 0,05
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Radiation Heat exchange by radiation between two surfaces

Double glazing

Rsi

R1

Rg

R2

Rse

The inner surface of the glass
is metallized on the warm side.

Total thermal resistance of the
double glazing is the sum of all
resistances in series

RT = Rsi + R1 + Rg + R2 + Rsi

emissivity of glass e = 0,837

heat resistance of the gap Rg is
enlarged by metal plating!

emissivity of plating e ≃ 0,05
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Radiation Heat exchange by radiation between two surfaces

Double glazing - plating effect

Resistances that do not change by plating:
Rse, Rsi, 2× glass resistance: R1 + R2 = 0,004

1 + 0,004
1

also convective part of the heat transfer coeff. hc
remains nearly constant
there is no flow at the gap width d = 12mm,
so hc = λ

d = 0,025
0,012 = 2.1Wm−2 K−1

the heat transfer coefficient is strongly influenced by the
surface plating

hr = 4 a1a2
a1+a2−a1a2σT

3
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Radiation Heat exchange by radiation between two surfaces

Double glazing - plating effect

No plating

hr = 4 0,837·0,837
0,837+0,837−0,837·0,837 · 5,67 · 10−8 · 2833

hr = 3.7WK−1m−2

Rg = 1
2,1+3,7 = 0.17Km2W−1

RgT = 0,13+ 0,004+ 0,17+ 0,004+ 0,04 = 0.35Km2W−1

One glass plated

hr = 4 0,837·0,05
0,837+0,05−0,837·0,05 · 5,67 · 10−8 · 2833

hr = 0.25WK−1m−2

Rg = 1
2,1+0,25 = 0.42Km2W−1

RgT = 0,13+ 0,004+ 0,42+ 0,004+ 0,04 = 0.60Km2W−1

hr = 4 a1a2
a1+a2−a1a2σT

3, Rg = 1
hc+hr , RgT = Rsi + R1 + Rg + R1 + Rse
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Radiation Heat exchange by radiation between two surfaces

Shielding radiation in the gap by screens

Rg
gap

Rg1 Rg2

Rg Rg Rg

screens

Consider vacuum⇒
heat transfer by radiation only!

The same emissivity of all surfaces.

Then the thermal resistance of the gap:

Rg = 1
hr =

(
4 e
2−eσT

3
)−1

Inserting screens, the thermal resistance of
each gap is approximately also Rg.

The total resistance is therefore approx.
RgT

.
= (n+ 1) · Rg, n is number of screens.

In a vacuum, radiation shielding is effective!
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Radiation Heat exchange by radiation between two surfaces

Shielding in a vacuum gap
(between two aluminum foils)

Numerically for θ1 = 2.5 ◦C, θ2 = 17.5 ◦C, e = 0,05

No screen: θ = 10 ◦C

Rg =

(
4

0,05
2− 0,05

· 5,67 · 10−8 · 2833
)−1

=
1

0,131
= 7.6Km2W−1

One screen: θ1 = 6.25 ◦C, θ2 = 13.75 ◦C

Rg1 =
(
4 0,05
2−0,05 · 5,67 · 10−8 · 2793

)−1
= 7.92Km2W−1

Rg2 =
(
4 0,05
2−0,05 · 5,67 · 10−8 · 2873

)−1
= 7.27Km2W−1

RgT = Rg1 + Rg2 = 7,92+ 7,27 = 15.19Km2W−1 = 2Rg
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Radiation Heat exchange by radiation between two surfaces

Shielding in the air gap
(between two aluminium foils)

In the air gap, the convection or conduction is also involved

Suppose a narrow gap – there is no convection, just
conduction

Then the thermal resistance of the gap

Rg = 1
hr+hc =

(
4 e
2−eσT

3 + λ
d

)−1

After inserting the screen, the thermal resistance of each gap

is R
′
g =

(
4 e
2−eσT

3
+ λ

d/2

)−1
and RgT = R

′
g1 + R

′
g2

For temperatures from the previous example
and λ = 0.025Wm−1 K−1, d = 12mm
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Radiation Heat exchange by radiation between two surfaces

Shielding in the air gap
(between two aluminium foils)

No screen

Rg =
(
4 0,05
2−0,05 · 5,67 · 10−8 · 2833 + 0,025

0,012

)−1
= 0.451Km2W−1

One screen (another aluminium foil)

R
′
g1 =

(
4 0,05
2−0,05 · 5,67 · 10−8 · 2793 + 0,025

0,006

)−1
= 0.233Km2W−1

R
′
g2 =

(
4 0,05
2−0,05 · 5,67 · 10−8 · 2873 + 0,025

0,006

)−1
= 0.232Km2W−1

RgT = 0,233+ 0,232 = 0.465Km2W−1 = 1,03Rg
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Radiation Heat exchange by radiation between two surfaces

Earth’s equilibrium temperature (without
atmosphere)

Calculate the Earth’s equilibrium temperature TZ under these
assumptions

it has no atmosphere
it has no internal heat sources
the intensity of the Sun’s radiation is IS = 1366Wm−2

the absorptivity of the earth’s surface for solar radiation is
a = 0.7
the surface emissivity in the IR region is e = 0.97

IS = 1366Wm−2
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Radiation Heat exchange by radiation between two surfaces

Earth’s equilibrium temperature (without
atmosphere)

Solution
In equilibrium heat input = heat output

Pin = Pout
the heat input of the Earth is Pin = IS · a · πR2

Z

the heat output of the Earth’s surface is Pout = 4πR2
Z · e · σT4Z

which means
TZ = 4

√
ISa
4eσ = 4

√
1366·0,7

4·0,97·5,67·10−8 = 256,8K = −16,3 °C
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Heat transfer by convection

Heat transfer by convection

Moving mass is used to transport heat

Conductive heat transport is also an integral part
from surface to liquid
from one layer of fluid to another

The convection is
forced (fan, wind)
natural, gravity (caused by temperature difference)
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Heat transfer by convection

Forced Convection

EN ISO 6946
hce = 4+ 4v,
where v is wind velocity

Not subject of this lectures.

Heat transfer coefficient on
the external side of the
structure.
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Heat transfer by convection

Natural gravity convection

Vertical wall-to-interior wall-to-wall transition
(internal surface of a building envelope) (air gap)
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Heat transfer by convection

Natural gravity convection

Heat transfer by natural convection is a complex process whose
modeling is based on several approaches.

Numerical solution
Numerical solution of differential equations describing convection
(using specialized software).

Similarity theory
Heat transfer is determined experimentally only in certain cases
and converted into other geometrically and physically similar
cases using similarity theory. Whether situations are similar can be
determined using similarity numbers (criteria).
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Heat transfer by convection

Natural convection – numerical solution

Balance equations need to be constructed to solve the
problem

energy balance
mass balance
momentum balance
angular momentum balance

You need to know and write
equation of state of flowing medium
dependence of material properties of media on state
parameters

So we have a set of many equations that need to be solved
simultaneously
this is not a simple task, but software that can do it exists ...
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Heat transfer by convection Similarity theory in heat transfer by convection

Nusselt Number

The situations can be considered geometrically and physically
similar if their Nusselt numbers are equal

Nusselt Number

Nu =
hcl
λ

λ – thermal conductivity of the liquid
l – „characteristic size“ of the body

If we know the Nusselt number for a given situation, then the heat
transfer coefficient by convection (hc) is determined using:

Determination of hc from a known Nusselt number

hc =
Nu λ
l

(Wm−2 K−1) (7)
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Heat transfer by convection Similarity theory in heat transfer by convection

Rayleigh number

Empirical relations for Nusselt number (8, 9) contain the number Ra

Ra =
gΔTl3

Tνa
,

where g is the gravitational acceleration, ΔT is the temperature
difference between the surface and the fluid, T s the mean
temperature determined from surface and fluid temperature, l is
the wall height , ν the kinematic viscosity a is the coefficient of
thermal conductivity of the flowing fluid, ie air.
The number expresses the proportion of heat transfer by
convection and conduction.

If small - the liquid does not flow.
Larger - fluid flows laminarly.
Even bigger - flows turbulently.
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Heat transfer by convection Similarity theory in heat transfer by convection

Heat transfer vertical wall – air

The Nusselt number was determined experimentally by many
authors. Experimental values can be interleaved (fit) by some
suitable function. Various forms of these functions can be found in
literature, here is one of the simplest shapes for heat transfer from
vertical wall to fluid:

Empirical relations for Nusselt number

Nu = 1,18 · Ra
1
8

(
pro10−3 ≤ Ra < 500

)
Nu = 0,54 · Ra

1
4

(
pro500 ≤ Ra < 2 · 107

)
(8)

Nu = 0,135 · Ra
1
3

(
pro2 · 107 ≤ Ra < 1013

)
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Heat transfer by convection Similarity theory in heat transfer by convection

Heat transfer vertical wall – air (hsi)

software: koeficientPrestupuNaSteneaVeVzduchoveMezere.xlsx [3]122 / 129

http://people.fsv.cvut.cz/~vydra/programy/koeficientPrestupuNaSteneaVeVzduchoveMezere.xlsx


Heat transfer by convection Similarity theory in heat transfer by convection

Wall to wall heat transfer (air gap)

Other empirical relationships apply to the heat transfer between
two vertical walls separated by an air gap, e.g.

Empirical relations for Nusselt number

Nu = 1
(
forRa < 124

a
ν

(
0,952+

a
ν

) h
l

)
Nu = 0,19 · Ra

1
4 ·

(
l
h

) 1
9

(pro15000 ≤ Ra < 150000) (9)

Nu = 0,071 · Ra
1
3 ·

(
l
h

) 1
9

(pro150000 ≤ Ra < 7200000)

In equations, l is the width, h the height of the air gap.
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Heat transfer by convection Similarity theory in heat transfer by convection

Examples of calculated coefficients hc = Nu · λl

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

h
c

(W
m

-2
K

-1
)

d (mm)

Konvekční část hc součinitele přestupu tepla pro různé plyny 
a teploty ve svislé vzduchové mezeře mezi dvěma skly 

vzduch
argon
vzduch
argon

(θprům = 10 °C, Δθ = 15°C)
(θprům = 10 °C, Δθ = 15 °C)
(θprům = 0 °C, Δθ = 30 °C)
(θprům = 0 °C, Δθ = 30 °C)

software: koeficientPrestupuNaSteneaVeVzduchoveMezere.xlsx [3]124 / 129

http://people.fsv.cvut.cz/~vydra/programy/koeficientPrestupuNaSteneaVeVzduchoveMezere.xlsx


Heat transfer by convection Similarity theory in heat transfer by convection

Heat transfer in the gap between two glasses

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80

h
(W

m
-2

K
-1

)

d (mm)

Součinitelé přestupu tepla ve svislé vzduchové mezeře mezi 
dvěma skly (�θ=15 °C)

hc+hr, vzduch
hc, vzduch
hr, sklo
hr+hc argon, pokoveno
hc, argon
hr, pokoveno
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Abbreviations I

Abbreviation Quantity (czech/english) Definition Units

Q teplo (heat) J

Φ
celkový tok teplpřes plochu S

(heat flow rate)
Φ = dQ

dτ W

q⃗
hustota tepelného toku

(heat flux)
q = dΦ

dS
W
m2

θ teplota (temperature) °C

T
absolutní teplota

(absolute temperature)
T = θ + 273,15 K

τ čas (time) s
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Abbreviations II

φ
množství materiálu v objemu

material in volume
kg
m3 , mol

m3

ms
hmotnost suchého materiál

mass of dry material
kg

mw
hmotnost kapalné vody

mass of liquid water
kg

Mc
rychlost kondenzace

condensation rate
kg
m2 s

μ
faktor difúzního odporu

diffusion resistance factor
–
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Abbreviations III

μw

molární hmotnost vody

molar mass of water
0,018 kg

mol
kg
mol

φ
relativní vlhkost vzduchu

relative air humidity
– nebo %

u
vlhkost materiálu

material moisture
u = mw

ms
– nebo %

v (index) vodní pára (water vapour) –

w (index) kapalná voda (liquid water) –
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