Time schedule CM02 - Lectures Mo. 16:00-17:50, We. 14:00-15:50, Tutorials We. 16-17:50

Summer semester 2015

	Lecturer	Lectures (in total 24-26)	Tutorials (in total 13)
1M	Vítek	SLS 1 ULS and SLS differences, Loading	18.2. PC slab 1 Design on ULS,
16.2.		combinations, RC struct. State I and II,	reinforcement
		Effective section, stress analysis	
2W	Vítek	SLS 2 Limitation of stress, Crack origin,	
18.2.		Crack width analysis, limits of the crack	
		width	
3M	Vítek	SLS 3 Deformations of RC structures,	25.2. PC slab 2 Crack width
23.2.		General method, Simplified methods,	analysis
		Deflection analysis of the RC beam	
4W	Vítek	SLS 4 Design of RC structures on ULS and	
25.2.		SLS, Thickness of slabs, Depth of beams,	
		Construction sequence	
5M	Vítek	SLS 5 Watertight structures, Principles of	4.3. PC slab 3 Deflection analysis
2.3.		the design, Concrete, Reinforcement, Joints	Test no. 1 SLS
6W	Vítek	PC 1 Introduction to PC, Basic principles,	
4.3.		Advantages, Materials for PC structures	
7M	Vítek	PC 2 Design of prestressing, prestress	11.3. Prestressed beam 1 Design
9.3.		losses, prestressing during the service life	of the geometry, loading,
8W	Vítek	PC 3 Technology of prestressing, pre and	parameters of the cross-section
11.3.		post tensioning, anchors, prestressing	
		process	
9M	Vráblík	PC 4 Verification of SLS and ULS in	18.3. Prestressed beam 2 Design
16.3.		bending and shear	of prestressing.
10W	Vráblík	PC 5 Application of PC in buildings, eng.	er frei frei frei frei frei frei frei fr
18.3.	,	structures and bridges	
11M	Borukalová	MS 1 Masonry structures – terminology,	25.3. Prestressed beam 3
23.3.	Doranaiova	compressed members, concentrated	Verification of axial stresses, ULS
		compression	in bending
12W	Broukalová	MS 2 Masonry bending, shear general	Test no. 2 Prestressed concrete
25.3.		models, simplified models	
13M	Broukalová	MS 3 Reinforced masonry – transversal	1.4. Masonry 1 Preliminary
30.3.		reinforcement	design of masonry building,
14W	Broukalová	MS 4 Masonry – longitudinal reinforcement	verification of the compressed
1.4.	Drounaiova		member
15W	Broukalová	MS 5 Masonry – strengthening of masonry	8.4. Masonry 2 Verification of the
8.4.		structures	underground wall (ULS)
			subjected to the earth pressure
16M	Broukalová	PS 1 Precast structures – differences in	5
13.4.		design, temporary design situations,	
		execution, Systems and elements of precast	
		structures, Multistorey buildings	
1737	Duoului 1/	DS 2 Droppet atmentures Design of	15 4 Maganer 2 Marifineting
17W	Broukalová	PS 2 Precast structures – Design of	15.4. Masonry 3 Verification of
15.4.		elements, introduction to strut and tie	the non-bearing wall subjected to the wind load
		models (D-regions), fastening elements,	
		lifting anchors	Test no. 3 Masonry
18M	Foglar	PS 3 Joints in precast structures, structural	
20.4.		performance, numerical modelling	

19W 22.4. 20M 27.4.	Foglar Foglar	PS 4 Composite structures (concrete – concrete) PS 5 Precast structures – industrial halls	22.4. PS 1 Composite concrete – concrete structure – design on ULS
21W 29.4. 22M 4.5.	Šafář Šafář	CB 1 Concrete bridges 1 – Introduction to bridges, Terminology, Basic cross-section CB 2 Concrete bridges 2 – Introduction to the design, structural systems	29.4. PS 2 Composite concrete-concrete structure – verification of stresses, simple drawing Test no. 4 Precast
23W 6.5 24M 11.5.	Šafář Vráblík	CB 3 Bridge equipment, pavements, railway tracks ES 1 Engineering structures 1 Introduction to engineering structures – examples, problems	6.5. Final check Assessments
25W 13.5		Rector's day – No lecture	Rector's day – No tutorial

General conditions

Assessment

- Absence max. 1/3 i.e. min. 8 x students must be present
- Passing min. 2 from 4 tests in tutorials
- Submission of all 4 exercises in adequate quality

Examination

- Assessment completed
- Successful passing of the examination test (min.50% of points). Results of the tests in tutorials may be supporting.

Review of exercises

- 1. SLS Precast panel design of reinforcement (ULS), crack width analysis, deflection analysis
- 2. Prestressed beam design of the geometry design of prestressing, verification of stresses and ULS in bending
- 3. Masonry 3 separate tasks
- 4. Composite concrete concrete structure, design ULS, verification SLS

Vítek Prague, 1. 2. 2015