Time schedule CM02 Summer sem. 2018 - Lectures Tue. 8:00-9:50, Tue. 10:00-11:50, Tutorials Mo 14:00-15:50, Tutorials: Horská, A.

	Lecturer	Lectures (in total 24-26)	Tutorials (in total 12)
1Tue	Broukalová	MS 1 Masonry structures – terminology,	19.2. Masonry 1 Preliminary
20.2.		compressed members, concentrated	design of masonry building,
		compression	verification of the compressed
2 Tue	Broukalová	MS 2 Masonry bending, shear general	member
20.2.		models, simplified models	
3 Tue	Broukalová	MS 3 Reinforced masonry – transversal	26.2. Masonry 2 Verification of
27.2.		reinforcement	the underground wall (ULS)
4 Tue	Broukalová	MS 4 Masonry – longitudinal	subjected to the earth pressure
27.2.		reinforcement	
5 Tue	Broukalová	MS 5 Masonry – strengthening of masonry	5.3. Masonry 3 Verification of the
6.3.		structures	non-bearing wall subjected to the
<u>(</u> T	D 11 /		Wind load
6 Tue	Broukalova	PS 1 Precast structures – differences in	Test no. 1 Masonry
6.3.		design, temporary design situations,	
		execution, Systems and elements of precast	
		structures, Multistorey buildings	
7 m	D 11 /		10.0 00 1.0
/ Tue	Broukalova	PS 2 Precast structures – Design of	12.3. PS 1 Composite concrete –
13.3.		elements, fastening elements, lifting	concrete structure – design on
		anchors	ULS
8 Tue	Hájek	PS 3 Joints in precast structures, structural	
13.3.		performance, numerical modelling	
9 Tue	Hájek	PS 4 Composite structures (concrete –	19.3. PS 2 Composite concrete-
20.3.		concrete)	concrete structure – verification of
10 Tue	Hájek	PS 5 Precast structures – industrial halls	stresses, simple drawing
20.3.	3.7/. 1		Test no. 2 Precast
11 Tue	Vitek	SLS I ULS and SLS differences, Loading	26.3. RC slab I Design on ULS,
21.3.		Combinations, RC struct. State I and II,	reinforcement
12 Tuo	Vítok	SLS 21 imitation of strong. Creak origin	
12 Tue 27 3	VIICK	Crack width analysis limits of the crack	
21.3.		width	
13 Tue	Vítek	SLS 3 Deformations of RC structures	9.4 RC slab 2 Crack width
3.4	VICK	General method. Simplified methods	analysis
2		Deflection analysis of the RC beam	
14 Tue	Vítek	SLS 4 Design of RC structures on ULS	
3.4.		and SLS, Thickness of slabs, Depth of	
		beams, Construction sequence	
15 Tue	Vítek	SLS 5 Watertight structures, Principles of	16.4. RC slab 3 Deflection
10.4.		the design, Concrete, Reinforcement,	analysis
		Joints	Test no. 3 SLS
16 Tue	Vítek	PC 1 Introduction to PC, Basic principles,	
10.4.		Advantages, Materials for PC structures	
17 Tue	Vítek	PC 2 Design of prestressing, prestress	23.4. Prestressed beam 1 Design
17.4.		losses, prestressing during the service life	of the geometry, loading,
18 Tue	Vítek	PC 3 Technology of prestressing, pre and	parameters of the cross-section
17.4.		post tensioning, anchors, prestressing	
		process	

19 Tue	Vráblík	PC 4 Verification of SLS and ULS in	30.4. Prestressed beam 2 Design
24.4		bending and shear	of prestressing.
20 Tue	Vráblík	PC 5 Application of PC in buildings, eng.	
24.4.		structures and bridges	
21 Tue	Vítek	CB 1 Concrete bridges 1 – Introduction to	7.5. Prestressed beam 3
3.5.		bridges	Verification of axial stresses, ULS
22 Tue	Vítek	CB 2 Concrete bridges 2 – Introduction to	in bending
3.5.		bridges	Test no. 4 Prestressed concrete
23 Tue	Broukalová	Fibre Concrete	14.5. Consultancy. Final check
15.5			and assessments.
24 Tue	Vráblík	ES 1 Engineering structures 1 Introduction	
15.5.		to engineering structures – examples,	
		problems	

General conditions

Assessment

- Absence max. 1/3 i.e. min. 8 x students must be present
- Passing min. 2 from 4 tests in tutorials
- Submission of all 4 exercises in adequate quality

Examination

- Assessment completed
- Successful passing of the examination test (min.50% of points). Results of the tests in tutorials may be supporting.

Review of exercises

- 1. Masonry 3 separate tasks
- 2. Composite concrete concrete structure, design ULS, verification SLS
- 3. SLS Precast panel design of reinforcement (ULS), crack width analysis, deflection analysis
- 4. Prestressed beam design of the geometry design of prestressing, verification of stresses in SLS and ULS in bending

Vítek Prague, 10. 2. 2018