7th task: Pad footing

Pad footing

- Design of dimensions
- Design of plain concrete pad footing
- Design of reinforced concrete pad footing
- Drawings (shape and reinforcement of footings)

Difference between PC/ RC footing

- Difference is in load-bearing angle
- For plain concrete, load-bearing angle is approximately 60°

- For reinforced concrete, the value is $30-45^{\circ}=>$ footing can be thinner, but you have to use the reinforcement

Reinforcement changes load-bearing angle

Horizontal dimensions

- $\mathrm{N}_{\mathrm{Ed}}, \mathrm{H}_{\mathrm{Ed}}, \mathrm{M}_{\mathrm{Ed}}$ - maximum values in the foot of inner column from 1st task
- Same for plain concrete and reinforced concrete footing
- Self-weight of the footing can be estimated as

$$
G_{0}=0.1 N_{\mathrm{Ed}}
$$

- Design strength of subsoil (sandy gravel)

$$
R_{\mathrm{d}}=400 \mathrm{kPa}
$$

- Eccentricity of loading

$$
e=\frac{M_{\mathrm{Ed}}+H_{\mathrm{Ed}} \cdot h}{N_{\mathrm{Ed}}+G_{0}}
$$

Horizontal dimensions

- The height of the footing is unknown, but we can estimate it from the assumption $\alpha=60^{\circ}$

Horizontal dimensions

- Effective area of the footing:

$$
\sigma=\frac{N_{\mathrm{Ed}}+G_{0}}{A_{\mathrm{eff}}} \leq R_{\mathrm{d}} \quad \Rightarrow \quad A_{\mathrm{eff}} \geq \frac{N_{\mathrm{Ed}}+G_{0}}{R_{\mathrm{d}}}
$$

- Width of the footing b can be obtained from quadratic equation:

$$
A_{\mathrm{eff}}=b \cdot(b-2 e)
$$

- Quadratic equation => two roots, only one of them will make physical sense

Horizontal dimensions

- Caluclate real value of b-round to 50 mm
- For further calculations, calculate estimations of h, e and $A_{\text {eff }}$
- Check clear distance of two adjacent pad footings - should be at least b, otherwise strip footings or foundation slab should be used

Plain concrete footing

- Footing can be modelled as cantilever of length a
- Design stress that bends the cantilever:

$$
\sigma_{\mathrm{d}}=\frac{N_{\mathrm{Ed}}}{A_{\mathrm{eff}}}
$$

- Bending moment per unit:

$$
m_{\mathrm{c}}=\frac{1}{2} \sigma_{\mathrm{d}} a^{2} \quad[\mathrm{kNm} / \mathrm{m}]
$$

Plain concrete footing

- Tensile strength of concrete:

- Real height of the footing (round to 50 mm):

$$
h \geq \frac{a}{0.85} \sqrt{\frac{3 \sigma_{\mathrm{d}}}{f_{\mathrm{ctd}}}}
$$

Effect of shear

- Calculate real values of e and $\mathrm{A}_{\text {eff }}$

Plain concrete footing

- Check of the footing - 2 conditions:

1. Tensile stress < tensile strength of concrete

$$
\sigma_{\mathrm{ct}}=\frac{m_{c}}{W}=\frac{m_{c}}{1-h h^{2}} \leq f_{\mathrm{ctd}}
$$

Here we take $b=1 \mathrm{~m}$ as
we calculated m_{c} per 1 m
2. Stress under the footing < strength of subsoil

$$
\sigma=\frac{N_{\mathrm{Ed}}+G \longleftarrow R_{\mathrm{d}} \quad \begin{array}{c}
\text { Self-weight of the footing } \\
\text { (NOT the estimated } \mathrm{G}_{0} \text {). } \\
A_{\mathrm{eff}} \\
\text { calculate } \mathrm{G} \text { from real } \\
\text { dimensions of your footing }
\end{array}}{\text { Sol }}
$$

- If any of the conditions is not checked, the footing should be redesigned (in the homework, just propose the change, do not recalculate)

Reinforced concrete footing

- Choose $\mathrm{h}=\mathrm{a}$ (load-bearing angle 45°)
- Calculate e, $\mathrm{A}_{\text {eff }}$ and σ_{d} (different values than plain concrete footing)
- Reinforced concrete footing can be modelled as cantilever with the length of:

$$
l_{\mathrm{c}}=a+0,15 b_{s}
$$

- Calculate m_{c} (the same formula as for plain concrete footing, but use I_{c} instead of a)

Reinforced concrete footing

- Design and check bending reinforcement calculation procedure is the same as for slabs or beams
- Value of m_{c} is in $\mathrm{kNm} / \mathrm{m}=>$ use $\mathrm{b}=1 \mathrm{~m}$ in calculation of reinforcement !!!
- Use cover depth $50 \mathrm{~mm}, 14$ - 20 mm rebars (use bigger diameters only if necessary)
- + Check the stress under the footing (2nd condition for plain concrete footing)

Reinforced concrete footing

- If load-bearing angle is lower (close to 30°), punching reinforcement may be required
- One has to look for critical position of control perimeter $0,5 \mathrm{~d} \leq \mathrm{r}_{\mathrm{u}} \leq 2 \mathrm{~d}$ where $\mathrm{v}_{\mathrm{Rd}, \mathrm{i}}-\mathrm{v}_{\mathrm{Ed}, \mathrm{i}}$ is minimal (iteration)
- Eventually, punching reinforcement should be designed in this perimeter

Drawings

